Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

High-resolution esophageal manometry : addressing thermal drift of the manoscan system

Robertson, E. V. and Lee, Y. Y. and Derakhshan, M. H. and Wirz, A. A. and Whiting, J. R. H. and Seenan, J. P. and Connolly, P. and McColl, K. E. L. (2012) High-resolution esophageal manometry : addressing thermal drift of the manoscan system. Neurogastroenterology and Motility, 24 (1). 61-e11. ISSN 1350-1925

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The high resolution esophageal manometry system manufactured by Sierra Scientific Instruments is widely used. The technology is liable to ‘thermal drift’, a change in measured pressure due to change in temperature. This study aims to characterize ‘thermal drift’ and minimize its impact. Response of the system to immediate temperature change (20 °C to 37 °C) was tested. Accuracy of pressure measurement over two hours at 37 °C was examined. Six repetitions were performed and median pressure change calculated for each sensor. Sensors were compared using Kruskal-Wallis test. Current correction processes were tested. There was a biphasic response of the system to body temperature: an immediate change in recorded pressure, ‘thermal effect’ and an ongoing pressure change with time, ‘baseline drift’. Median thermal effect for all 36 sensors was 7 mmHg (IQR 3.8 mmHg). Median baseline drift was 11.1 mmHg (IQR 9.9 mmHg). Baseline drift varied between sensors but for a given sensor was linear. Interpolated thermal compensation, recommended for prolonged studies, corrects data assuming a linear drift of pressures. When pressures were corrected in this way, baseline pressure was almost restored to zero (Median 0.3 mmHg, IQR 0.3). The standard thermal compensation process did not address the error associated with baseline drift. Thermal effect is well compensated in the current operation of the system but baseline drift is not well recognized or addressed. Incorporation of a linear correction into current software would improve accuracy without impact on ease of use.