Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Electromagnetic interference analysis in HV substation due to a static var compensator device

Zhang, L. and Li, Q. M. and Wang, W. and Siew, W. H. (2012) Electromagnetic interference analysis in HV substation due to a static var compensator device. IEEE Transactions on Power Delivery, 27 (1). pp. 147-155. ISSN 0885-8977

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Static var compensator (SVC) devices have been extensively utilized in modern substations to achieve high flexibility and wide tolerance to load variation. However, due to frequent switching of the thyristors in a static var compensator, large amounts of electromagnetic interference (EMI) are being generated, which may cause malfunction of the SVC or unaccepted response of victim devices positioned nearby. In this paper, an advanced acquisition system was established to implement onsite measurements in order to obtain the EMI data. A digital calibration technique for the antenna was applied to trace back the actual electromagnetic emissions. The radiated and conducted EMI data are comparatively analyzed to present detailed and useful information of the EMI levels. According to the configuration of an SVC and the dynamic performance of the random load, an equivalent model was established to simulate and predict the conducted EMI levels. Based on onsite measurements as well as theoretical analysis, pertinent immunity measures were put forward to reduce coupling impacts on the electronic units of the secondary side.