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The procedure for finding the solutions of the Vakhnenko-Parkes equation by means
of the inverse scattering method is described. The continuous spectrum is taken into
account in the associated eigenvalue problem. The suggested special form of the
singularity function for continuous part of the spectral data gives rise to the multi-
mode solutions. The sufficient conditions are proved in order that these solutions
become real functions. The interaction of the N periodic waves is studied. The
procedure is illustrated by considering a number of examples. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4726168]

I. INTRODUCTION

Various physical phenomena in engineering and physics may be described by nonlinear evolution
equations. Looking for exact solutions to completely integrable equations is a difficult task. In recent
years, a few methods for obtaining the exact solutions of nonlinear evolution equations have been
suggested. One of the fundamental direct methods is undoubtedly the Hirota bilinear method1, 2

which possesses significant features that make it practical for the determination of multiple-soliton
solutions. However, the direct methods can be applied only for finding the solitary wave solutions
or the traveling-wave solutions. In this sense, the inverse scattering method is the most appropriate
way of tackling the initial value problem although its employment is a fairly difficult procedure.3–5

In this paper, we will consider the nonlinear evolution equation

WX XT + (1 + WT )WX = 0. (1)

This equation arises from the Vakhnenko equation2, 6–8

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u + u = 0 (2)

through the transformation9, 10

u(x, t) = U (X, T ) = WX (X, T ),

x = x0 + T + W (X, T ), (3)

t = X.

The corresponding governing equation for U, namely

UUX XT − UXUXT + U 2UT = 0 (4)

is given in Ref. 9.
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Equations (1), (2), and (4) arose as a result of describing high-frequency perturbations in a
relaxing medium.8 Following the papers,11–13 hereafter (1) (or equivalently (4)) is referred to as the
Vakhnenko-Parkes equation (VPE).

Recently the Hirota method2, 9, 10 as well as the inverse scattering method14 have been applied to
obtain the exact N-soliton solutions of the VPE. In this paper, we use the inverse scattering transform
method to study the periodic solutions of the VPE (1) associated with the continuous part of the
spectral data.

In Sec. II, we formulate the spectral problem for the VPE by adapting the results given by
Caudrey15 and by Kaup.16 In Sec. III, we find the solutions corresponding to the continuous part of
the spectral data. In Sec. IV, we find the real N-mode solutions for N = 1, 2, 3, 4. Our results are
summarized in Sec. V.

II. THE SPECTRAL PROBLEM FOR THE VPE

In order to use the inverse scattering method, one first has to formulate the associated eigenvalue
problem. In Ref. 14, it is shown that the pair of equations

ψX X X + WXψX − λψ = 0, (5)

3ψXT + (WT + 1)ψ = 0 (6)

is associated with the VPE (1) considered here. Note that the inverse scattering transform problem
is related to a spectral equation of third order (5). The inverse problem for third-order spectral
equations has been considered by Caudrey15 and Kaup.16 We adapt the results obtained by these
authors to the present problem and describe a procedure for using the inverse scattering transform
method to find the solutions of the VPE that are associated with the continuous part of the spectral
data.

We use the general theory of the inverse scattering problem for N spectral equations which has
been developed by Caudrey in Ref. 15. According to Ref. 15 the spectral Eq. (5) can be rewritten in
the form

∂

∂ X
ψ = [A(ζ ) + B(X, ζ )] · ψ (7)

with

ψ =
⎛
⎝ ψ

ψX

ψX X

⎞
⎠ , A =

⎛
⎝ 0 1 0

0 0 1
λ 0 0

⎞
⎠ , B =

⎛
⎝ 0 0 0

0 0 0
0 −WX 0

⎞
⎠ . (8)

The matrix A has the eigenvalues λj(ζ ) and left- and right-eigenvectors ṽ j (ζ ) and v j (ζ ), respectively
(j = 1, 2, 3). In the case considered here we define

λ j (ζ ) = ω jζ, λ3
j (ζ ) = λ,

v j (ζ ) =
⎛
⎝ 1

λ j

λ2
j

⎞
⎠ , ṽ j (ζ ) = (

λ2
j λ j 1

)
,

(9)

where ωj = e2π i(j − 1)/3 are the cube roots of 1.
The solution of the linear Eq. (5), or equivalently Eq. (7), has been obtained by Caudrey15 in

terms of Jost functions φ j (X, ζ ) which have the asymptotic behaviour

� j (X, ζ ) = exp{−λ j (ζ )X}φ j (X, ζ ) → v j (ζ ) (10)

as X → − ∞.
Here T is regarded as a parameter; the T-evolution of the scattering data will be taken into

account later. The solution of the direct problem (7) is given by the equation system (4.5) in Ref. 15.
Since there is a set of symmetry properties φ1(X, ζ /ω1) = φ2(X, ζ /ω2) = φ3(X, ζ /ω3) (see (6.14)
and (6.15) in Ref. 15, for example) for Jost functions φ j (X, ζ ), we need only consider the element
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FIG. 1. The regular regions for Jost functions φ1(X, ζ ) in the complex ζ -plane. The dashed lines with singularity functions
Q1j(ζ ′) determine the boundaries between regular regions. The dotted lines are the lines where the poles appear.

φ1(X, ζ ) (as well as 	1(X, ζ )). In the general case, it is necessary to take into account both the bound
state spectrum and the continuous spectrum. According to the relation (6.20) in Ref. 15, the solution
of (7) is as follows:

	1(X, ζ ) = 1 −
K∑

k=1

3∑
j=2

γ
(k)
1 j

exp{[λ j (ζ
(k)
1 ) − λ1(ζ (k)

1 )]X}
λ1(ζ (k)

1 ) − λ1(ζ )
	1(X, ω jζ

(k)
1 )

+ 1

2π i

∫ 3∑
j=2

Q1 j (ζ
′)

exp{[λ j (ζ
′) − λ1(ζ ′)]X}

ζ ′ − ζ
	±

1 (X, ω jζ
′)dζ ′. (11)

Equation (11) contains the spectral data, namely K poles with the quantities γ
(k)
1 j for the bound state

spectrum as well as the functions Q1j(ζ ′) given along all the boundaries of regular regions for the
continuous spectrum. The boundaries between regions, where the Jost function φ1(X, ζ ) is regular,
appear at Re(λ1(ζ ′) − λj(ζ ′)) = 0 over all j �= 1 (Ref. 15) (see Fig. 1). The singularities on boundaries
of these regions within the complex ζ -plane are taken into account by the third term in the relation
(11). The integral in (11) is along all the boundaries (see the dashed lines in Fig. 1).

The bound state spectrum is associated with soliton solutions; in this case Q1j(ζ ) ≡ 0 in (11).
The procedure for finding the exact N-soliton solution of the VPE via the inverse scattering method is
described in Ref. 14. In Sec. III, we study the solutions of the VPE which follow from the continuous
part of the spectral data.

III. THE SOLUTIONS ASSOCIATED WITH THE CONTINUOUS PART OF THE SPECTRAL
DATA

Now we consider only the continuous spectrum of the associated eigenvalue problem, i.e., we
assume that at least some of the functions Q1j(ζ ′) are nonzero, while γ

(k)
1 j ≡ 0 in Eq. (11). At each

fixed j �= 1 the functions Q1j(ζ ′) characterize the singularity of 	1(X, ζ ). This singularity can appear
only on boundaries between the regular regions on the ζ -plane. The condition Re(λ1(ζ ′) − λj(ζ ′))
= 0 determines these boundaries.15 According to Ref. 15, we find that for 	1(X, ζ ) the complex
ζ -plane is divided into four regions by two lines:

(i) ζ = ω2ξ, where Q(1)
12 �= 0, Q(1)

13 ≡ 0,

(ii) ζ = −ω3ξ, where Q(2)
12 ≡ 0, Q(2)

13 �= 0,
(12)

where ξ is real (see Fig. 1). Analysis shows that the direction of the integration in (11) is such that
ξ sweeps from − ∞ to + ∞.
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Let us consider the singularity functions Q1j(ζ ′) on the boundaries, on which the Jost function
φ1(X, ζ ) is singular, in the form (n = 1, 2, ..., N) on the line ζ ′ = ω2ξ ,

Q(1)
12 (ζ ′) = −2π i

N∑
n=1

q (2n−1)
12 δ(ζ ′ − ζ ′

1),

Q(1)
13 (ζ ′) = −2π i

N∑
n=1

q (2n−1)
13 δ(ζ ′ − ζ ′

1) ≡ 0,

(13)

and on the line ζ ′ = − ω3ξ ,

Q(2)
12 (ζ ′) = −2π i

N∑
n=1

q (2n)
12 δ(ζ ′ − ζ ′

2) ≡ 0,

Q(2)
13 (ζ ′) = −2π i

N∑
n=1

q (2n)
13 δ(ζ ′ − ζ ′

2).
(14)

For the singularity functions (13) and (14), the relationship (11) is reduced to the form (M = 2N),

	1(X, ζ ) = 1−
M∑

m=1

3∑
j=2

q (m)
1 j

exp{[λ j (ζ ′
m) − λ1(ζ ′

m)]X}
ζ ′

m − ζ

×	1(X, ω jζ
′
m). (15)

As follows from the relationship (15) and the formula

φ1 X (X, ζ ) = i√
3

[φ1 X (X,−ω2ζ )φ1(X,−ω3ζ )

−φ1 X (X,−ω3ζ )φ1(X,−ω2ζ )] (16)

given in Ref. 14, for example, the singularities in the form (13) and (14) appear in pairs ζ ′
2n−1 = ω2ξn ,

ζ ′
2n = −ω3ξn . From (16), considering the limits ζ → ζ ′

m and X → − ∞, it also follows immediately
that

q (2n−1)
12 ω2 = q (2n)

13 , with n = 1, 2, ..., N . (17)

We call attention to the fact that, at the special choice of the singularity function Q1j(ζ ′) for
continuous part of the spectral data as in (13) and (14), the second term on the right-hand side of the
relation (15) is similar in mathematical structure to the second term in relation (5.5) from Ref. 14.
Indeed, the formal substitutions ξm = iξm, q (m)

1 j = γ
(m)
1 j transform the second term in (15) into the

second term in (5.5) from Ref. 14. Since there is this transformation, we can apply the procedure
developed for solving the N-soliton interaction to obtain the solutions connected with the continuous
part of the spectral data for the associated eigenvalue problem.14, 15 According to Ref. 14 (see Eqs.
(5.11)– (5.15) therein), we can find 	1(X, ζ ) and can connect 	1(X, ζ ) with the solution W (X ), by
expanding 	1(X, ζ ) as an asymptotic series in λ−1

1 (ζ ) (see Eq. (5.11) in Ref. 14) as follows:

	1(X, ζ ) = 1 − 1

3λ1(ζ )
[W (X ) − W (−∞)] + O(λ−2

1 (ζ )). (18)

On the other hand, by defining

m(X ) =
3∑

j=2

q (m)
1 j exp{λ j (ζ

′
m)X}	1(X, ω jζ

′
m), (19)

we may rewrite the relationship (15) as

	1(X, ζ ) = 1 −
M∑

m=1

exp{−λ1(ζ ′
m)X}

ζ ′
m − ζ

m(X ). (20)
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From (18) and (20), the following key relationship can be derived (see also Eq. (6.38) in Ref. 15):

W (X ) − W (−∞) = −3
M∑

m=1

exp{−λ1(ζ ′
m)X}m(X )

= 3
∂

∂ X
ln(det M(X )). (21)

Here M(X) is the 2N × 2N matrix given by elements

Mml(X ) = δml −
3∑

j=2

q (m)
1 j

exp{[λ j (ζ ′
m) − λ1(ζ ′

l )]X}
ζ ′

l − ω jζ ′
m

. (22)

Now let us consider the T-evolution of the spectral data. By analyzing the solution of Eq. (6)
when X → − ∞, we find that φi(X, T, ζ ) = exp [ − (3λi(ζ ))− 1T]φi(X, 0, ζ ). Hence the T-evolution
of the scattering data is given by the relationships (with m = 1, 2, ..., M)

q (m)
i j (T ) = q (m)

i j (0) exp{[−(3λ j (ζ ′
m)−1

+(3λ1(ζ ′
m))−1]T },

λ j (T ) = λ j (0).

(23)

Consequently, the final result for the solution of the VPE, when we consider the spectral data from
the continuous spectrum, as well as taking into account their T-evolution, is as follows:

W (X, T ) = 3
∂

∂ X
ln (det M(X, T )) + const. (24)

The 2N × 2N matrix M(X, T) is defined as follows:

Mml(X, T ) = δml −
3∑

j=2

q (m)
1 j (0)

exp{[−(3λ j (ζ ′
m)−1 + (3λ1(ζ ′

m))−1]T + [λ j (ζ ′
m) − λ1(ζ ′

l )]X}
ζ ′

l − ω jζ ′
m

, (25)

with the relations (n = 1, 2, ..., N)

λ1(ζ ′
2n−1) = ω2ξ2n−1, λ2(ζ ′

2n−1) = ω3ξ2n−1, q (2n−1)
12 = ω2β2n−1, q (2n−1)

13 = 0,

λ1(ζ ′
2n) = −ω3ξ2n−1, λ3(ζ ′

2n) = −ω2ξ2n−1, q (2n)
12 = 0, q (2n)

13 = ω3β2n−1.
(26)

As will be clear from the examples in Sec. IV, the solution (24) and (25) include N frequencies from
the continuous part of the spectral data. For this reason, the solution (24) and (25) will be referred
to as the N-mode solution of the VPE. Evidently, these discrete modes emanate from the special
choice (13) and (14) of the singularity functions Q1j(ζ ′) for continuous part of the spectral data.

For the solution (24) and (25), there are N arbitrary constants ξ n and N arbitrary constants βn.
The constants ξ n are real, while the constants βn, in the general case, are complex. The solution
(24) obtained through the matrix (25) is, in general, a complex function. Consequently, there is a
problem in selecting the real solutions from the complex solutions. It turns out that we can obtain
the real solutions by means of restriction of arbitrariness in the choice of the constants β i. For the
N-mode solution, we have succeeded in finding these restrictions.

IV. REAL PERIODIC SOLUTIONS OF THE VPE

This research has culminated in finding the real N-mode solution. For convenience, we consider
the solutions for N = 1, 2, 3, 4. For N ≥ 5, all formulas can be easily obtained beginning with these
examples.
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1. In order to obtain the one-mode solution of the VPE (1), we need first to calculate the 2 × 2
matrix M(X, T) according to (25). For the matrix elements Mkl(X, T), we have

M11 = 1 − iω2β1√
3ξ1

exp[−i
√

3ξ1 X + (i
√

3ξ1)−1T ],

M12 = −ω3β1
2ξ1

exp[2ω3ξ1 X + (i
√

3ξ1)−1T ],

M21 = ω2β1
2ξ1

exp[−2ω2ξ1 X + (i
√

3ξ1)−1T ],

M22 = 1 − iω3β1√
3ξ1

exp[−i
√

3ξ1 X + (i
√

3ξ1)−1T ],

(27)

so that its determinant is

det M =
[
1 + c1 exp(−i

√
3ξ1 X + (i

√
3ξ1)−1T )

]2
, (28)

where c1 = − iβ1

2
√

3ξ1
.

As has already been noted, the singularity functions in the form (13) and (14) give rise to a
single frequency for the continuous part of the spectral data. Hence, once the expression (28) has
been substituted into the key formula (24), (24) must provide us with the one-mode solution.

The condition that WX is real requires a restriction on the constant β1 (if the constant ξ 1 is
arbitrary, but real). We have succeeded in obtaining this restriction (see Appendix), namely that
the constant c1, which in general is the complex-valued one c1 = |c1|exp (iχ1), should possess
unit modulus |c1| = 1, while the arbitrary real constant χ1 defines an initial shift of solution
X1 = χ1/(

√
3ξ1) so that

det M =
[

1 + exp

(
−i

√
3ξ1(X − X1) + T

i
√

3ξ1

)]2

. (29)

The final result for one mode of the continuous spectrum is the solution (24) with (29), namely,

W = −3
√

3 ξ1 tan

(√
3

2
ξ1(X − X1) + T

2
√

3ξ1

)
+ const. (30)

The corresponding solution for U = WX (with U governed by (4)) was obtained recently by
other methods, for example, by the sine-cosine method,17 the (G′/G)-expansion method,13 and the
extended tanh-function method.17–19 However, only the approach developed here and the solution in
the form (24) and (25) enable us to study the interaction the periodic N-mode waves.

2. Let us consider the two-mode solution of the VPE. In this case M(X, T) is a 4 × 4 matrix.
We will not give the explicit form of this matrix here, but we find its determinant

det M(X, T ) = (1 + q1 + q2 + b12q1q2)2, (31)

where

qi = ci exp[−i
√

3ξi X + (i
√

3ξi )
−1T ], ci = − iβi

2
√

3ξi

,

b12 =
(

ξ2 − ξ1

ξ2 + ξ1

)2
ξ 2

1 + ξ 2
2 − ξ1ξ2

ξ 2
1 + ξ 2

2 + ξ1ξ2
, b12 ≥ 0. (32)

In Appendix, the restrictions on the constants ci = |ci|exp (iχ i) for real solutions are found. The real
constants χ i define the initial shifts of solutions Xi = χi/(

√
3ξi ). The analysis in considerable detail

shows (see Appendix) that the relations |c1| = |c2| = 1/
√

b12 are sufficient conditions in order that
W may become real. Consequently, the real solution describing the interaction of two periodic waves
for the VPE is defined by the key relationship (24), where

det M(X, T ) =
(

1 + 1√
b12

q1 + 1√
b12

q2 + q1q2

)2

(33)
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and b12 is as in (32), while qi should contain the phase shifts Xi = χi/(
√

3ξi ) as in (34), namely

qi = exp
[
−i

√
3ξi (X − Xi ) + (i

√
3ξi )

−1T
]
. (34)

3. For N = 3 in relationship obtained from (25)

det M(X, T ) = (1 + c1q1 + c2q2 + c3q3 + c1c2b12q1q2

+c1c3b13q1q3 + c2c3b23q2q3

+c1c2c3b12b13b23q1q2q3)2 (35)

with qi, ci as in (32) and

bi j =
(

ξ j − ξi

ξ j + ξi

)2 ξ 2
i + ξ 2

j − ξiξ j

ξ 2
i + ξ 2

j + ξiξ j
, bi j = b ji , (36)

we write ci = |ci|exp (iχ i), then the arguments χ i determine the initial phase shifts of mode Xi

= χi/(
√

3ξi ). As is proved in Appendix, the conditions on the constants c1 (or the same on β i) are

|c1| = 1/
√

b12b13, |c2| = 1/
√

b12b23, |c3| = 1/
√

b13b23. (37)

Hence, the three-mode solution is the relation (24) with

det M =
[

1 + 1√
b12b13

(q1 + q2q3) + 1√
b12b23

(q2 + q1q3)

+ 1√
b13b23

(q3 + q1q2) + q1q2q3

]2

. (38)

Here the phase shifts Xi are taken into account in qi by way of (34).
4. For N = 4 the restrictions are as follows (see Appendix):

|ci | =
4∏

j �=i

b
− 1

2
i j , bi j = b ji , i = 1, 2, 3, 4. (39)

The determinant for a real solution (24) is as follows:

det M =
[

1 + 1√
b12b13b14

(q1 + q2q3q4)

+ 1√
b12b23b24

(q2 + q1q3q4)

+ 1√
b13b23b34

(q3 + q1q2q4)

+ 1√
b14b24b34

(q4 + q1q2q3) (40)

+ 1√
b13b14b23b24

(q1q2 + q3q4)

+ 1√
b12b14b23b34

(q1q3 + q2q4)

+ 1√
b12b13b24b34

(q1q4 + q2q3) + q1q2q3q4

]2

.

As before, the qi and bij are defined by (34) and (36), respectively.
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V. CONCLUSION

We have adapted and applied the inverse scattering method to the Vakhnenko-Parkes equation in
order to find the solutions that are associated with the continuous spectrum of the spectral problem.
The special form of the singularity function for continuous part of the spectral data enabled us
to obtain the multi-mode solutions. The sufficient conditions have been proved in order that the
solutions become real functions. We have described how to define the interaction of the multi-mode
periodic waves. The procedure has been illustrated by considering a number of examples.
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APPENDIX: THE CONDITIONS ON THE CONSTANTS ci FOR REAL SOLUTIONS

We use the case N = 4 as an example to prove the restrictions on the constants, at which the so-
lution W (X, T ) is real. We will consider the auxiliary function f = √

det M(X, T ) for convenience,
namely

f = 1 + c1q1 + c2q2 + c3q3 + c4q4 + c1c2b12q1q2

+c1c3b13q1q3 + c1c4b14q1q4 + c2c3b23q2q3

+c2c4b24q2q4 + c3c4b34q3q4 + c1c2c3b12b13b23q1q2q3

+c1c2c4b12b14b24q1q2q4 + c1c3c4b13b14b34q1q3q4

+c2c3c4b23b24b34q2q3q4

+c1c2c3c4b12b13b14b23b24b34q1q2q3q4. (A1)

We here redefine the values ci = |ci|, since the arguments χ i can always be introduced in the variables
qi = exp (iθ i) with θ = −√

3ξi (X − Xi ) − (
√

3ξi )−1T .
The solution (21) then has a form

W (X, T ) = 6
∂

∂ X
ln( f ) + const. (A2)

The function f is complex-valued, i.e.,

f = fRe + i f I m = | f | exp(iχ f ), fRe = Re( f ),
f I m = Im( f ), tan(χ f ) = f I m/ fRe,

(A3)

hence,

W (X, T )/6 = ∂

∂ X
ln(| f |) + i

∂χ f

∂ X
+ const. (A4)

If we succeed in making ∂2χ f/∂X2 ≡ 0 by the choice of the constants ci, then the solution W (X, T )
will be a real function.
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Let us write fIm and fRe in explicit forms

f I m = c1 sin(θ1) + c2 sin(θ2) + c3 sin(θ3) + c4 sin(θ4)

+c1c2b12 sin(θ1 + θ2) + c1c3b13 sin(θ1 + θ3)

+c1c4b14 sin(θ1 + θ4) + c2c3b23 sin(θ2 + θ3)

+c2c4b24 sin(θ2 + θ4) + c3c4b34 sin(θ3 + θ4)

+c1c2c3b12b13b23 sin(θ1 + θ2 + θ3) (A5)

+c1c2c4b12b14b24 sin(θ1 + θ2 + θ4)

+c1c3c4b13b14b34 sin(θ1 + θ3 + θ4)

+c2c3c4b23b24b34 sin(θ2 + θ3 + θ4)

+c1c2c3c4b12b13b14b23b24b34 sin(θ1 + θ2 + θ3 + θ4),

fRe = 1 + c1 cos(θ1) + c2 cos(θ2) + c3 cos(θ3) + c4 cos(θ4)

+c1c2b12 cos(θ1 + θ2) + c1c3b13 cos(θ1 + θ3)

+c1c4b14 cos(θ1 + θ4) + c2c3b23 cos(θ2 + θ3)

+c2c4b24 cos(θ2 + θ4) + c3c4b34 cos(θ3 + θ4)

+c1c2c3b12b13b23 cos(θ1 + θ2 + θ3) (A6)

+c1c2c4b12b14b24 cos(θ1 + θ2 + θ4)

+c1c3c4b13b14b34 cos(θ1 + θ3 + θ4)

+c2c3c4b23b24b34 cos(θ2 + θ3 + θ4)

+c1c2c3c4b12b13b14b23b24b34 cos(θ1 + θ2 + θ3 + θ4).

Now we select a factor sin( 1
2 (θ1 + θ2 + θ3 + θ4)) from fIm and a factor cos( 1

2 (θ1 + θ2 + θ3 + θ4))
from fRe. This can be done if the following conditions are satisfied:

c1 = c2c3c4b23b24b34, c2 = c1c3c4b13b14b34,

c3 = c1c2c4b12b14b24, c4 = c1c2c3b12b13b23,

c1c2b12 = c3c4b34, c1c3b13 = c2c4b24, c1c4b14 = c2c3b23,

c1c2c3c4b12b13b14b23b24b34 = 1. (A7)

It turns out that all these relations are valid, when

c1 = 1√
b12b13b14

, c2 = 1√
b12b23b24

,

c3 = 1√
b13b23b34

, c4 = 1√
b14b24b34

. (A8)

The conditions (A8) enable us to reduce both fIm and fRe to the forms

f I m = 2g sin( 1
2 (θ1 + θ2 + θ3 + θ4)),

fRe = 2g cos( 1
2 (θ1 + θ2 + θ3 + θ4)), (A9)
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where

g = 1√
b12b13b14

cos
(

1
2 (θ1 − θ2 − θ3 − θ4)

)

+ 1√
b12b23b24

cos
(

1
2 (θ2 − θ1 − θ3 − θ4)

)

+ 1√
b13b23b34

cos
(

1
2 (θ3 − θ1 − θ2 − θ4)

)

+ 1√
b14b24b34

cos
(

1
2 (θ4 − θ1 − θ2 − θ3)

)
(A10)

+ 1√
b13b14b23b24

cos
(

1
2 (θ1 + θ2 − θ3 − θ4)

)

+ 1√
b12b14b23b34

cos
(

1
2 (θ1 + θ3 − θ2 − θ4)

)

+ 1√
b12b13b24b34

cos
(

1
2 (θ1 + θ4 − θ2 − θ3)

)
.

Now it is readily seen from (A3) that

χ f = 1
2 (θ1 + θ2 + θ3 + θ4) (A11)

and as a consequence we have

∂2χ f

∂ X2
= ∂2χ f

∂ X∂T
= 0. (A12)

Hence, as follows from (A4), the four-mode solution of the VPE can be reduced to real form with
four real constants Xi and four real constants ξ i (see (41)).

Without proof here we give the following conditions on the constants ci that ensure the real
N-mode solution of the VPE:

|ci | =
N∏

j �=i

b
− 1

2
i j , bi j = b ji , i = 1, ..., N , (A13)

whereas the N constants ξ i determine the values bij and the N constants Xi through β i define the phase
shifts of the separate modes. Note that these relations are sufficient conditions, but not necessary
ones.
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