Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel

Rahimi, Salaheddin and Engelberg, Dirk and Duff, Jonathan and Marrow, James (2009) In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel. Journal of Microscopy, 233 (3). pp. 423-431. ISSN 0022-2720

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Grain boundary engineering has been proposed to increase the lifetime performance of sensitized austenitic stainless steel in aggressive environments. Increased microstructure resistance is typically associated with higher fractions of twin (Sigma 3) grain boundaries, but there is uncertainty about the properties and role of other boundaries. To develop predictive models for stress corrosion crack nucleation, more information is required about how grain boundary crystallography and the orientations of the grain boundary plane and its surrounding grains affect crack development. Digital image correlation combined with electron backscatter diffraction has been used to characterize the microstructure and to observe, in situ, the nucleation and propagation of short stress corrosion cracks in thermo-mechanically processed type 304 stainless steel. The crack path and its growth rate have been determined and are found to be influenced by the microstructure.