Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Numerical simulation of a Gyro-BWO with a helically corrugated interaction region, cusp electron gun and depressed collector

He, Wenlong and Donaldson, Craig and Zhang, Liang and Ronald, Kevin and Phelps, Alan and Cross, Adrian (2011) Numerical simulation of a Gyro-BWO with a helically corrugated interaction region, cusp electron gun and depressed collector. In: Numerical Simulations of Physical and Engineering Processes. InTech, pp. 101-132. ISBN 978-953-307-620-1

[img]
Preview
Text (He-etal-Intech-2011-Numerical-simulation-of-a-Gyro-BWO-with-a-helically-corrugated-interaction-region-cusp-electron-gun)
He_etal_Intech_2011_Numerical_simulation_of_a_Gyro_BWO_with_a_helically_corrugated_interaction_region_cusp_electron_gun.pdf - Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 logo

Download (898kB) | Preview

Abstract

The gyrotron backward wave oscillator (gyro-BWO) is an efficient source of frequency-tunable high-power coherent radiation in the microwave to the terahertz range. It has attracted significant research interest recently due to its potential applications in many areas such as remote sensing, medical imaging, plasma heating and spectroscopy. A gyro-BWO using a helically corrugated interaction region (HCIR) has achieved an even wider frequency tuning range and higher efficiency compared with a conventional gyro-BWO with a smooth-bore cavity. This is due to the existence of an “ideal”eigenwave in the HCIR with a large and constant group velocity when the axial wave number is small.