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Abstract: Time varying parameter (TVP) models have enjoyed an in-
creasing popularity in empirical macroeconomics. However, TVP models
are parameter-rich and risk over-�tting unless the dimension of the model is
small. Motivated by this worry, this paper proposes several Time Varying
dimension (TVD) models where the dimension of the model can change over
time, allowing for the model to automatically choose a more parsimonious
TVP representation, or to switch between di¤erent parsimonious representa-
tions. Our TVD models all fall in the category of dynamic mixture models.
We discuss the properties of these models and present methods for Bayesian
inference. An application involving US in�ation forecasting illustrates and
compares the di¤erent TVD models. We �nd our TVD approaches exhibit
better forecasting performance than several standard benchmarks and shrink
towards parsimonious speci�cations.
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1 Introduction

It is common for researchers to model variation in coe¢ cients in time series
models using state space methods. If, for t = 1; ::; T , yt is an n� 1 vector of
observations on the dependent variables, Zt is an n�mmatrix of observations
on explanatory variables and �t is an m�1 vector of states, then such a state
space model can be written as:

yt = Zt�t + "t (1)

�t+1 = �t + �t;

where "t is N (0; Ht) and �t is N (0; Qt). The errors, "t and �t, are assumed
to be independent (at all leads and lags and of each other). This framework
can used to estimate time-varying parameter (TVP) regression models, vari-
ants of which are commonly-used in macroeconomics (e.g., Groen, Paap and
Ravazzolo, 2009, Koop and Korobilis, 2009). Furthermore, TVP-VARs (see
among many others, Canova, 1993, Cogley and Sargent, 2005, D�Agostino,
Gambetti and Giannone, 2009 and Primiceri, 2005) are obtained by letting Zt
contain deterministic terms and appropriate lags of the dependent variables,
setting Qt = Q and giving Ht a multivariate stochastic volatility form.
Such TVP models allow for constant gradual evolution of parameters.

However, they assume that the dimension of the model is constant over time
in the sense that �t is always an m � 1 vector of parameters. But there are
theoretical and empirical reasons for being interested in TVP models where
the dimension of the state vector changes over time. Macroeconomists are
often interested in whether restrictions suggested by economic theory hold.
For instance, Staiger, Stock and Watson (1997), show how, if the Phillips
curve is vertical, a certain restriction is imposed on a particular regression
involving in�ation and unemployment. Koop, Leon-Gonzalez and Strachan
(2009a) investigate this restriction in a TVP regression model and �nd that
the probability that it holds varies substantially over time. As another exam-
ple, consider the VARs of Amato and Swanson (2001) where interest centers
on Granger causality restrictions that imply that money has no predictive
power for output or in�ation. It is possible (and empirically likely) that
restrictions such as these hold at some points in time but not others. In
such cases, the researcher would want to work with a TVP model, but where
the parameters satisfy restrictions at certain points in time but not at oth-
ers. In short, there are many theoretical reasons for wanting to work with
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a time-varying dimension (TVD) model where restrictions which reduce the
dimension of the model are imposed only at some points in time.
There are also many econometrically-inspired reasons for being interested

in TVD models. For instance, if lag length changes over time, then impos-
ing di¤erent lag lengths at di¤erent points in time will lead to more precise
estimates. In forecasting, the importance of shrinkage has been found in a
myriad of studies (e.g. Groen, Paap and Ravazzolo, 2009 or Koop and Koro-
bilis, 2009). In general, TVP models risk being over-parameterized. Allowing
for the dimension of the model to change over time is potentially an e¤ective
way of reducing over-parameterization worries and ensuring shrinkage while
minimizing the risk of model mis-speci�cation.
The desire to work with a TVP model that falls into the familiar class

of state space models, but allows for the dimension of the model to change
over time motivates the present paper. To our knowledge, there are few ex-
isting papers which consider this question. There are, as discussed above,
many papers which allow parameters to change over time and adopt state
space methods. Furthermore, in previous work (Koop, Leon-Gonzalez and
Strachan, 2009a), we have developed methods for calculating the probability
that equality restrictions on states hold at any point in time (but without
actually imposing the restrictions). Finally, there are some papers, such as
Koop and Potter (2009), which develop methods for estimating state space
models with inequality restrictions imposed. However, the aim of the present
paper is di¤erent from all these approaches: we wish to develop methods for
estimating models which impose equality restrictions on the states. In other
words, the literature has considered the testing of equality restrictions on
states in state space models and estimation of states under inequality restric-
tions. But the present paper is one of the few which considers estimation of
state space models subject to equality restrictions on the states (where these
restrictions may hold at some points in time but not others). Other papers
which adopt di¤erent approaches to this problem include the dynamic model
averaging approach of Raftery, Karny, Andrysek and Ettler (2007) and Koop
and Korobilis (2009) and the combination of stochastic search variable se-
lection methods with TVP models such as in Korobilis (2009). Our TVD
models di¤er from these in that our framework involves the use of dynamic
mixture models (see, e.g., Gerlach, Carter and Kohn, 2000) and associated
posterior simulation algorithms. Such models have proved popular in several
areas of macroeconomics (e.g. Giordani, Kohn and van Dijk, 2007). We
consider several new ways of implementing the dynamic mixture approach
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which lead to models which allow for time-variation in both the parame-
ters and the dimension of the model. We investigate these methods in an
empirical application involving forecasting US in�ation.

2 Time Varying Dimension Models

The models used in this paper are all dynamic mixture models (see, e.g.,
Gerlach, Carter and Kohn, 2000 or Giordani and Kohn, 2008). An advan-
tage of adopting a dynamic mixture framework is that e¢ cient methods of
posterior simulation are available and well-understood. Thus, our discussion
of Bayesian inference in these models can be very brief. It is the structure
and justi�cation for our particular dynamic mixture models that must be
provided and this is what we do in this section. In the empirical section,
we provide precise modelling details (including priors) for a TVD-regression
application. But we outline the general ideas here �rst, since they can be
used with other models such as TVD-VARs.

2.1 The Dynamic Mixture Model

The dynamic mixture model of Gerlach, Carter and Kohn (2000) adds to (1)
the assumption that any or all of the system matrices, Zt, Qt and Ht, depend
on an s � 1 vector Kt. As a simple example, suppose �t contains regression
coe¢ cients, s = 1, Kt 2 f0; 1g and Qt = KtQ. Such a speci�cation has been
used with changepoint models (see, e.g., Giordani and Kohn, 2008 or Koop,
León-González and Strachan, 2009b). That is, if Kt = 0, then �t+1 = �t and
the regression coe¢ cients do not change, but if Kt = 1 they do change.
Gerlach, Carter and Kohn (2000) discuss how this speci�cation results

in a mixtures of Normals representation for yt and, hence, the terminology
dynamic mixture model arises. The contribution of Gerlach, Carter and
Kohn (2000) is to develop an e¢ cient algorithm for posterior simulation for
this class of models. The e¢ ciency gains occur since the states are integrated
out and K = (K1; ::; KT )

0 is drawn unconditionally (i.e. not conditional on
the states). A simple alternative algorithm would involve drawing from the
posterior for K conditional on � = (�01; ::; �

0
T )
0 and then the posterior for �

conditional on K. Such a strategy can be shown to produce a chain of draws
which is very slow to mix. The Gerlach, Carter and Kohn (2000) algorithm
requires only that Kt be Markov (i.e. p (KtjKt�1; ::; K1) = p (KtjKt�1)) and
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is particularly simple if Kt is a discrete random variable.
In this paper, we consider three di¤erent ways Kt can enter the system

matrices so as to yield a TVD model.

2.2 A First TVD Model

We begin with a TVD model which adapts the approach of Gerlach, Carter
and Kohn (2000) in a particular way such that �t remains an m�1 vector at
all times, but there is a sense in which the dimension of the model can change
over time. Since �t remains of full dimension at all times, our claim that the
dimension of the model changes over time may sound odd. But we achieve
our goal by allowing for explanatory variables to be included/excluded from
the likelihood function depending on Kt. The basic idea can be illustrated
quite simply in terms of (1). Suppose Zt = Ktzt where zt is an explanatory
variable and Kt 2 f0; 1g. If Kt = 0 then zt does not enter the likelihood
function and the coe¢ cient �t does not enter the model. But if Ks = 1, then
the coe¢ cient �s does enter the model. Thus, the dimension of the model is
di¤erent at time t than at time s.
An interesting and sensible implication of this speci�cation can be seen

by considering what happens if a coe¢ cient is omitted from the model for h
periods, but then is included again. That is, suppose we have Kt�1 = 1,

Kt = Kt+1 = ::: = Kt+h�1 = 0

but Kt+h = 1 and further assume Qt = Q. Then (1) implies:

E (�t+h) = �t�1

but

var (�t+h) = hQ:

In words, if an explanatory variable drops out of the model, but then reap-
pears h periods later, then your best guess for its value is what it was when
it was last in the model. However, the uncertainty associated with your best
guess increases the longer the coe¢ cient has been excluded from the model
(since the variance increases with h).
It is worth stressing that, if Kt = 0 then �t does not enter the likelihood

and, thus, it is not identi�ed in the likelihood. However, because the state
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equation provides an informative hierarchical prior for �t, it will still have a
proper posterior. To make this idea clear, let us revert to a general Bayesian
framework. Suppose we have a model depending on a vector of parameters
� which are partitioned as � = (�; ). Suppose the prior is p (�) = p (�; ) =
p () p (�j) and the likelihood is L (yj�). Now consider a second model
which imposes the restriction that � = 0: Instead of directly imposing the
restriction � = 0, consider what happens if we impose the restriction that �
does not enter the likelihood. That is, the likelihood for the second model is
L (yj�) = L (yj) and its posterior is

p (�jy) = L (yj�) p (�)R
L (yj�) p (�) d� =

L (yj) p ()R
L (yj) p (�) d�p (�j) = p (jy) p (�j) :

Since p (�j) integrates to one (or assigns a point mass to � = 0) integrating
p (�jy) with respect to � provides us with a valid posterior for the second
model and the integral

R
L (yj) p (�) d� will result in the correct marginal

likelihood. This is the strategy which underlies and justi�es our approach.
Our TVD approach can be used with a wide range of time series models

and with a wide range of restrictions on the coe¢ cients. In our empirical
section we describe a particular implementation of relevance for the TVD re-
gression model. This simply de�nes Kt as being a vector of dummy variables
which includes/excludes each explanatory variable. However, for other mod-
els slight di¤erences in implementation might be appropriate. For instance,
in the TVD-VAR, Kt could be restricted so that lag length can change only
in a sequential manner.

2.3 A Second TVD Model

To explain our second approach to TVD modelling, we return to our general
notation for state space models given in (1). The state equation can be
interpreted as a hierarchical prior for �t+1, expressing a prior belief that it is
similar to �t. In the empirical macroeconomics literature (see, among many
others, Ballabriga, Sebastian and Valles, 1999, Canova and Ciccarelli, 2004,
and Canova, 2007), there is a desire to combine such prior information with
prior information of other sorts (e.g. the Minnesota prior). This can be done
by replacing (1) by
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yt = Zt�t + "t (2)

�t+1 = M�t + (I �M) � + �t;

where M is an m�m matrix, � is an m� 1 vector and �t is N (0; Qt). For
instance, Canova (2007) sets � and Qt to have forms based on the Minnesota
prior and setsM = gI where g is a scalar. If g = 1, then the traditional TVP-
VAR prior is obtained, but as g decreases we move towards the Minnesota
prior.
In the TVD model, alternative choices for M , � and Qt suggest them-

selves. In particular, our second TVD model sets � = 0m;
1 M becomes

Mt which is a diagonal matrix with diagonal elements Ktj 2 f0; 1g and
Qt = MtQ. This model has the property that, if Kjt = 1 then the jth co-
e¢ cient is evolving according to a random walk in standard TVP-regression
fashion. But if Kjt = 0, then the jth coe¢ cient is set to zero, thus reducing
the dimension of the model.
To understand the implications of this speci�cation for Kt, consider the

simplest case where m = 1 and, thus �t and Kt are scalars and see what
happens if a coe¢ cient is omitted from the model for h periods. That is,
suppose we have Kt�1 = 1,

Kt = Kt+1 = ::: = Kt+h�1 = 0

but Kt+h = 1. In this case, (2) implies:

E (�t+h) = �

but

var (�t+h) = Q:

In words, in contrast to our �rst TVD model, our second TVD model implies
that, if a coe¢ cient drops out of the model, but then reappears h periods
later, then your best guess for its value is 0 and the uncertainty associated
with your best guess is Q (regardless of how long the coe¢ cient has been

1If the dependent variable is in levels and the explanatory variables include lagged
dependent variables, then the researcher may wish to set the element of � corresponding
to the �rst lag to one, to re�ect the common belief in random walk behavior.
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excluded from the model). Thus, there is more shrinkage in this model than
in our �rst TVDmodel and (in contrast to the �rst TVDmodel) it will always
be shrinkage towards zero (assuming � = 0). It is an empirical question as to
whether this speci�cation is more appropriate than the speci�cation of the
�rst TVD model.
As with our �rst TVD model, the posterior simulation algorithm of Ger-

lach, Carter and Kohn (2000) can be used directly and requires no further
discussion here. Further details of how we implement this model are provided
in the empirical section.

2.4 A Third TVD Model

To justify our third approach to TVD modelling, we begin by discussing the
TVP-SUR approach of Chib and Greenberg (1995) which has been used in
empirical macroeconomics in papers such as Ciccarelli and Rebucci (2002).
If we return to our general notation for state space models in (1), the model
of Chib and Greenberg (1995) adds another layer to the hierarchical prior:

yt = Zt�t + "t (3)

�t+1 = M�t+1 + �t;

�t+1 = �t + ut:

where the assumptions about the errors are described after (1) with the
additional assumptions that ut is i.i.d. N (0; R) and ut is independent of the
other errors in the model. Note that �t can potentially be of lower dimension
than �t, which is another avenue the researcher can use to achieve parsimony.
Note �rst that this speci�cation retains the random walk evolution of the

VAR coe¢ cients since it can be written as:

yt = Zt�t + "t (4)

�t+1 = �t + vt;

where vt = Mut + �t � �t�1. In this sense, the di¤erence between (1) and
(4) is that the state equation errors of the latter have a particular MA(1)
structure. However, if M is a square matrix, the hierarchical prior in (3)
expresses the conditional prior belief that
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E (�t+1j�t) =M�t
and, thus, is a combination of the randomwalk prior belief of the conventional
TVP model with the prior beliefs contained in M . M is typically treated as
known.
Our third TVD model can be constructed by specifying M and Qt to be

exactly as in our second TVD model.
To understand the properties of the third TVD model, we can consider

the same example as used previously (where a coe¢ cient drops out of the
model for h periods and then re-enters it). Remember that, in this case,
the �rst TVD model implied E (�t+h) = �t�1 and var (�t+h) = hQ while the
second TVDmodel implied E (�t+h) = 0 and var (�t+h) = Q. The third TVD
model can be seen to have properties closer to those of the �rst approach and
yields E (�t+h) = �t�1 and var (�t+h) = hR (if M is a square matrix).
The �rst and third TVD models, thus, can be seen to have similar prop-

erties. However, they di¤er in one important way. Remember that the �rst
TVD model did not formally reduce the dimension of �t in that all of its
elements were unrestricted (it constructed Kt in such a way so that some ele-
ments of �t did not enter the likelihood function). The third TVDmodel does
formally reduce the dimension of �t since it allows for some of its elements
at some points of time to be restricted to zero.

2.5 Posterior Computation in the TVD Models

The advantage of the TVD modelling framework outlined in this paper is
that existing methods of posterior computation can be used to set up a fast
and e¢ cient Markov Chain Monte Carlo (MCMC) algorithm. Thus we can
deal with computational issues quickly. For all our models, K is drawn using
the algorithm described in Section 2 of Gerlach, Carter and Kohn (2000).
Note that this algorithm draws K conditional on all the model parameters
except for �. The fact that � is integrated out analytically greatly improves
the e¢ ciency of the algorithm. We draw � (conditional on all the model
parameters, including K) using the algorithm of Chan and Jeliazkov (2009),
although any of the standard algorithms for drawing states in state space
models (e.g. Carter and Kohn, 1994 or Durbin and Koopman, 2002) could
be used. All our models have stochastic volatility and to draw the volatilities
and all related parameters we use the algorithm of Section 3 of Kim, Shephard
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and Chib (1998). The remaining parameters are the error variances in the
state equations and the parameters characterizing the hierarchical prior for
K. These can be drawn using standard methods as discussed below in the
context of the exact implementation of each approach.

3 Forecasting US In�ation

3.1 Data

To investigate the properties of the TVD models, we use a TVD regression
model and investigate how the various approaches work in an empirical exer-
cise involving US in�ation forecasting. The literature on in�ation forecasting
is a voluminous one. Here we note only that there have been many papers
which use regression-based methods in recursive or rolling forecast exercises
(e.g. Ang, Bekaert and Wei, 2007 and Stock and Watson, 2007, 2008) and
that recently papers have been appearing using TVP models for forecasting
(e.g. D�Agostino, Gambetti and Giannone, 2009).
Our data runs from 1960:Q1 to 2008:Q2 and we use CPI in�ation as our

dependent variable. The explanatory variables are two lags of the dependent
variable and the predictors listed in Table 1.2

Table 1: Predictors for In�ation
x1 EMPLOY: the percentage change in employment
x2 TBILL: three month Treasure bill rate
x3 SPREAD: the spread between the 10 year and 3 month Treasury bill rates
x4 MONEY: the percentage change in the money supply
x5 INFEXP: University of Michigan measure of in�ation expectations

We apply our TVD approach to the question of which of these explana-
tory variables is a good predictor for in�ation at each point of time. Note
that this means Kt is a vector of �ve dummy variables. At each point in time
there are 25 values Kt could take. Although each of our TVD approaches
de�nes a model, there is a sense in which they can be interpreted as au-
tomatically doing model averaging over a model space of 25T models (i.e.

2With the exception of the in�ation expectations variable (which was obtained from
the University of Michigan) all data was obtained from the FRED data base of the Federal
Reserve Bank of St. Louis.
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at each point in time each possible con�guration of Kt can be thought of
as de�ning a �model�). A related literature in the �eld of dynamic model
averaging (see, e.g., Raftery et al, 2007 or Koop and Korobilis, 2009) also
faces the computationally daunting task of working with model spaces of this
order of magnitude. The dynamic model averaging literature typically uses
approximate methods to make the computational burden manageable. Our
TVD approaches can be thought of an alternative way of dealing with this
problem which does not resort to approximations. However, it is the case
that the computational burden can be overwhelming if Kt is of high dimen-
sion and the Kj;t are, a priori, independent of one another. In such cases,
the researcher may wish to put more structure on the hierarchical prior for
Kt. For instance, in an AR(d) model an unrestricted approach would lead to
Kt taking on 2d possible values. But if we de�ne a hierarchical prior which
restricts Kt such that lags appear sequentially, this reduces to d the number
of possible values Kt can take.

3.2 Details of the First TVD Model

Write the TVD regression model as:

yt = �0;t +
dX
j=1

yt�j�j;t +

pX
j=1

Kj;txj;t�1j;t + "t; (5)

where Kj;t 2 f0; 1g is a binary variable that determines whether explanatory
variable xj;t�1 is included in the regression, and "t � N(0; exp(ht)).
Rewrite (5) as

yt = w
0
t�t + (fMtxt�1)

0t + "t; (6)

wherewt = (1; yt�1; : : : ; yt�d)0, �t = (�0;t; : : : ; �d;t)
0, fMt = diag(K1;t; : : : ; Kp;t);

xt�1 = (x1;t�1; : : : ; xp;t�1)
0 is a p � 1 vector of explanatory variables, and

t = (1;t; : : : ; p;t)
0. The states, �t = (�

0
t; 

0
t)
0 are assumed to evolve accord-

ing to a random walk as in (1) and we assume �1 � N(�0; D) with relatively
noninformative hyperparameter choices of �0 = 0 and D = 5� I. This strat-
egy of subjectively choosing proper but relatively noninformative priors is
used for all of the parameters in all of our models.
We do not restrict the range of values that Kt = (K1;t; : : : ; Kp;t) will

take. Hence, it can take on 2p values: Kt 2 I = f0; 1gp. But, we impose
a Markov hierarchical prior which expresses the belief that, with probability
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c the model will stay with its current set of explanatory variables and with
probability 1 � c it will switch to a new model. A priori, all of the 2p � 1
possible new models are equally likely. Thus we have:

Pr(Kt+1 = i jKt = i) = c; i 2 I (7)

Pr(Kt+1 = j jKt = i) =
1� c
2p � 1 ; i 6= j; i; j 2 I

for t = 1; : : : ; T�1. We assume that the prior for c follows a beta distribution
with parameters c01 = 1:76 and c02 = 2, such that E (c) = 0:47. With this
assumption, the conditional posterior distribution is also beta (see, e.g., page
84 of Chib, 1996).
We also must specify a prior for the initial values, K1;1; : : : ; Kp;1. Each of

these is, a priori, assumed to be an independent Bernoulli random variable:
Pr(Kj;1 = 1) = bj, j = 1; : : : ; p, where bj has a beta distribution with
hyperparameters b01 = 1:5 and b

0
2 = 1:5, such that E (bj) = 0:5. The posterior

for bj (conditional on K) can also be calculated as described on page 84
of Chib (1996) and the parameters of the beta posterior are Kj;1 + b

0
1 and

1�Kj;1 + b
0
2.

Next we assume �t � N(0; Q) where Q is a diagonal matrix. Each di-
agonal element of Q = diag(q1; : : : ; qd+p+1) is assumed to follow, indepen-
dently, an inverse-gamma distribution: qj � IG(�j=2; Sj=2) with �1 = : : : =
�d+p+1 = 6 and S1 = : : : = Sd+p+1 = 0:002. The posterior for qj (conditional
on the states) then takes a familiar inverse-gamma form (see, e.g., Koop,
2003, page 201).
Finally, we assume a mean-reverting stochastic volatility process for ht =

ln (Ht):
ht+1 = �+ �(ht � �) + vt; (8)

for t = 1; : : : ; T�1, where vt � N(0; �2v):We restrict the log-volatility process
to be stationary and impose j�j < 1 with h1 drawn from the stationary
distribution, i.e., h1 � N(�; �2v=(1� �2)):
The prior for � is assumed to be non-informative, i.e., p(�) is proportional

to a constant. Following Kim, Shephard and Chib (1998), the prior for � is
given by

log p(�) / (�
1
�1) log

�
1 + �

2

�
+(�

2
�1) log

�
1� �
2

�
; j�j < 1; �

1
; �
2
>
1

2
;
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with �
1
= 20 and �

2
= 1:5, giving a prior mean of 0:86. The prior for

�2v is assumed to be inverse-gamma: �
2
v � IG(�h=2; Sh=2), where �h = 6

and Sh = 0:04. All of these prior hyperparameter choices are relatively
noninformative but sensible, given the units of measurement of the data.

3.3 Details of the Second TVD Model

In our second approach to TVD modelling we work with:

yt = �0;t +

dX
j=1

yt�j�j;t +

pX
j=1

xj;tj;t + "t; (9)

which can be rewritten as

yt = w
0
t�t + x

0
t�1t + "t: (10)

As suggested by (2), we assume �t = (�
0
t; 

0
t)
0 evolves as follows:

�t+1 =Mt+1�t +Mt+1�t (11)

for t = 1; : : : ; T�1, whereMt = diag(�0d+1; K1;t; : : : ; Kp;t), �d+1 is an (d+ 1)�1
column of ones. The initial condition �1 is modeled as �1 � N(M1�0;M1DM1),
where �0 and D are known constants selected as in our �rst approach.
All other modelling assumptions are as for our �rst approach. Most im-

portantly, our hierarchical prior for K is as speci�ed in (7).

3.4 Details of the Third TVD Model

For the last formulation, we assume the same measurement equation given
in (10), but alter the state equations as in (3) to:

t =Mt�t +Mtvt; (12)

where Mt = diag(K1;t; : : : ; Kp;1) and

e�t+1 = e�t + wt; (13)

where e�t = (�0t; �0t)0 for t = 1; : : : ; T � 1 and e�1 � N(e�0; D�) where e�0 = 0,
D� = 5 � I. Furthermore, we have vt � N(0; R1) and wt � N(0; R2) where
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R1 = diag(r1;1; : : : ; r1;p) and R2 =diag(r2;1; : : : ; r2;d+p+1) are diagonal matri-
ces. Each diagonal element of R1 and R2 is assumed to follow, indepen-
dently, an inverse-gamma distribution: ri;j � IG(�=2; S=2) with � = 6 and
S = 0:002 for all i and j: All other modelling details are as for the other
two TVD approaches. With regards to posterior simulation, note that we
draw e�t and t (conditional on the other parameters) by �rst drawing e�t
marginal of t and then t given e�t. This di¤ers from the approach of Chib
and Greenberg (1995) who used the posterior of e�t conditional on t.
3.5 Benchmark Models for Comparison

In addition to the three TVD models, we consider four benchmarks for com-
parison. These are a TVP model with stochastic volatility, two constant coef-
�cient regression models (with and without stochastic volatility) and simple
random walk forecasts. In both of the constant coe¢ cients models we use a
N (0; 5I) prior for the regression coe¢ cients (which is the same as the prior
for the initial conditions in the TVD models). For the version with stochastic
volatility we use the same speci�cation as with the TVD models. For the
homoskedastic version, the error variance has an IG(3; 0:05) prior.
In order to make sure all our approaches are as comparable as possible,

our TVP regression model is exactly the same as our TVD models (including
having the same prior for all common parameters) except that we setKjt = 1
for all j and t.

3.6 Results: Estimation using the Full Sample

Remember that all of our models are speci�ed so that Kj;t = 1 if the jth pre-
dictor is included. Thus, the probability that Kj;t = 1 sheds light on whether
a predictor is included or excluded. In the latter case, a more parsimonious
model is achieved. Figures 1 through 5 plot p(Kj;t = 1 j y) for our three TVD
models for j = 1; ::; 5.
Note �rst that these �gures show that parsimony is being achieved. For

EMPLOY (j = 1) and SPREAD (j = 3), p(Kj;t = 1 j y) is less than 0:5
for most or all the time. And for some of the other variables and other
approaches, this probability is small for appreciable amounts of the time.
Although it is interesting to note that (except for the �rst TVD approach)
it is rare for p(Kj;t = 1 j y) to be very close to zero. This suggests that
shrinkage is being achieved, but not by completely excluding a predictor
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from the model. For instance, p(Kj;t = 1 j y) = 0:2 does not totally exclude
a predictor from the model, but shrinks its e¤ect towards zero.
Next consider the time varying aspect of the TVD models. Clearly there

is substantial time variation in many of the lines in Figures 1 through 5,
indicating that the impact of the corresponding predictor is changing over
time. We can also be sure any patterns are not an artifact of the statistical
methodology, since the patterns are so di¤erent in the di¤erent �gures. For
instance, one might expect that the lines in the �gures would uniformly tend
to increase over time since the available data is increasing, leading to more
�signi�cant� coe¢ cients. This is not the case. Although there are some
cases where p(Kj;t = 1 j y) is increasing over time, there are many where it is
not. Similarly, although our use of hierarchical priors will ensure shrinkage,
the patterns in the �gures do not solely re�ect this shrinkage since some
are shrunk much more than others. In short, these �gures indicate that our
TVD models are capturing time variation in the coe¢ cients in a sensible and
automatic fashion.
Next let us compare our three di¤erent TVD models. Broadly speaking,

they are yielding similar results. However, our �rst TVD model is sometimes
a bit di¤erent from the other two. It exhibits less time variation and, loosely
speaking, tends to either include a variable or exclude it. This is not sur-
prising in light of the properties of this model (see Section 2.2). That is,
the longer a predictor is excluded from the model, the larger the variance
in the state equation prior becomes (and the less shrinkage applies). This
could be an attractive feature if there are big structural breaks for the co-
e¢ cients. But, in our data set, this is a less attractive property. The third
TVD approach shares these properties with the �rst TVD model, but this is
partly counteracted by the added dimension reduction noted in Section 2.4.
However, these considerations suggest that the second TVD approach might
be most suitable for dealing with data sets with frequent small breaks.
Finally, it is hazardous to link economic stories based on reduced form

regression results such as ours. But one point is worth noting. Figure 5
presents results for the in�ation expectations variable. Previous studies (e.g.
Koop and Korobilis, 2009) have found this to be a good predictor for in�a-
tion, but only in recent times (e.g. after the early 1980s). Before the Great
Moderation, in�ation was high and volatile and surveys of in�ation expecta-
tions were often poor predictors of in�ation. But subsequently, agents found
it much easier to form accurate expectations of future in�ation. Our �ndings
in Figure 5 are consistent with this story (especially for our second and third
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TVD models).

Figure 1: p(K1;t = 1 j y).
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Figure 2: p(K2;t = 1 j y)
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Figure 3: p(K3;t = 1 j y).

18



Figure 4: p(K4;t = 1 j y).
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Figure 5: p(K5;t = 1 j y).

Figures 6 through 10 present posterior results for the coe¢ cients them-
selves. That is, they plot E

�
j;tjy

�
for j = 1; ::; 5. On the whole, they tell

a similar story to Figures 1 through 5. For instance, Figure 10 shows the
increasing role of the in�ation expectations variable as time passes. There
is also substantial evidence of time-variation in the marginal e¤ects of the
predictors in most cases. Previously we found that the �rst TVD approach
exhibited less time variation in Kt and found it more di¢ cult to switch be-
tween predictors. The impact of this can be clearly seen in several of the
�gures. For instance, in Figures 6, 8 and 9, the line corresponding to the
�rst TVD approach is virtually �at (similar to what would be obtained using
a recursive OLS estimate).
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Figure 6: E
�
1;tjy

�
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Figure 7: E
�
2;tjy

�
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Figure 8: E
�
3;tjy

�
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Figure 9: E
�
9;tjy

�
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Figure 10: E
�
5;tjy

�

3.7 Results: Forecasting Exercise

Our models provide us with p (y�+1jData� ), the predictive density for y�+1
using data available through time � . The predictive density is evaluated for
� = � 0; ::; T � 1 where � 0 is 1969Q4. Let yo�+1 be the observed value of y�+1.
Mean squared forecast error and mean absolute forecast error are common
measures of forecast performance. These are de�ned as:

MSFE =

PT�1
�=�0

�
yo�+1 � E (y�+1jData� )

�2
T � � 0

and

MAFE =

PT�1
�=�0

��yo�+1 � E (y�+1jData� )��
T � � 0

MSFE and MAFE only use the point forecasts and ignore the rest of the
predictive distribution. For this reason, we also use the predictive likelihood
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to evaluate forecast performance. Note that a great advantage of predictive
likelihoods is that they evaluate the forecasting performance of the entire
predictive density. Predictive likelihoods are motivated and described in
many places such as Geweke and Amisano (2010). The predictive likelihood
is the predictive density for y�+1 evaluated at the actual outcome yo�+1. We
use the sum of log predictive likelihoods for forecast evaluation:

T�1X
�=�0

log
�
p
�
y�+1 = y

o
�+1jData�

��
:

Note that, if � 0 = 0 then this would be equivalent to the log of the marginal
likelihood. Hence, the sum of log predictive likelihoods can also be inter-
preted as a measure similar to the log of the marginal likelihood, but made
more robust by ignoring the initial � 0 � 1 observations in the sample (where
prior sensitivity is most acute).3

Table 2 presents these forecast metrics for our three TVD approaches, the
TVP model, a random walk model, the constant coe¢ cient model (CC) and
the constant coe¢ cient model with stochastic volatility (CCSV). Regardless
of which forecast metric we use, the evidence of Table 2 strongly indicates
that all of our TVD approaches are forecasting substantially better than
commonly-used benchmarks. Note that the researcher may wish to use the
sum of log predictive likelihoods to construct posterior model probabilities
for use in a Bayesian model averaging (BMA) exercise. If the two models
under consideration were the second TVD model and the heteroskedastic
constant coe¢ cient model, then only 5% of the weight would be attached
to the constant coe¢ cient model. The homoskedastic constant coe¢ cient
model would receive only 1% in a similar exercise.
When we compare our three TVD approaches, we �nd that they perform

similarly to one another. In terms of the predictive likelihoods (the met-
ric preferred by most Bayesians), the second TVD approach forecasts best.
However, in terms of MSFEs (MAFEs) the �rst (third) TVD approaches
forecast best.

3To reduce the computational burden in this empirical illustration, the sums in our
forecast metrics are taken at every seventh quarter (where seven is chosen so as to not to
miss any seasonal di¤erences).
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Table 2: Measures of Forecast Performance

Model MSFE MAFE
Sum of log
Pred. like.

TVD 1 12.06 29.32 -8.96
TVD 2 13.13 30.02 -8.60
TVD 3 12.74 29.23 -8.62
Random Walk 27.37 41.08 �
CC 16.98 32.51 -13.10
CCSV 15.77 32.14 -11.50
TVP 13.74 31.01 -9.41

Table 2 establishes that, overall, the TVD approaches are forecasting
better that some commonly used benchmarks. To gain insight on whether
there are particular time periods they forecast particularly well, we present
Figures 11 and 12. These are cumulative sums of the MSFE and log predictive
likelihoods, respectively, for the various approaches. There is little evidence
that there are particular periods of time where the TVD models obtain their
overall lead in forecasting performance over the benchmark approaches. With
the exception of the random walk model, which forecasts very poorly at the
end of the sample, it seems that the TVD models are continually forecasting
slightly better than the benchmark approaches and that, over time, this leads
to substantial forecast improvements noted in Table 2.
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Figure 11: Cumulative Sums of MSFEs
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Figure 12: Cumulative Sums of Log Predictive Likelihoods

4 Conclusions

In this paper, we have presented a battery of theoretical and empirical ar-
guments for the potential bene�ts of TVD models. Like TVP models, TVD
models allow for the values of the parameters to change over time. Unlike
TVP models, they also allow for the dimension of the parameter vector to
change over time. Given the potential bene�ts of a TVD framework, the task
is to build speci�c TVD models. This task was taken up in section 2 of this
paper where three di¤erent TVD models were developed. These models all
are dynamic mixture models and, thus, have the enormous bene�t that we
can draw on existing methods of posterior computation developed in Gerlach,
Carter and Kohn (2000).
An empirical illustration involving forecasting US in�ation illustrated the

feasibility and desirability of the TVD approach. In-sample, we showed how
TVD models can automatically and sensibly �nd parsimonious speci�cations
within a �exible, but possibly over-parameterized, one. The bene�ts of such
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forms of shrinkage are shown in a forecasting exercise where TVD forecasting
models out-perform benchmark alternatives.
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