Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Interactions of amines with silicon species in undersaturated solutions leads to dissolution and/or precipitation of silica

Patwardhan, Siddharth and Tilburey, Graham E. and Perry, Carole C. (2011) Interactions of amines with silicon species in undersaturated solutions leads to dissolution and/or precipitation of silica. Langmuir, 27 (24). pp. 15135-15145. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The biogeochemical silicon cycle is the focus for many researchers studying the dissolution of silicon species from quartz, amorphous, and biogenic silica. Furthermore, the precipitation of biogenic silica by diatoms, radiolarian, sponges, and plants is also a popular focus for research. The ornate silica structures created by these species has attracted interest from biomaterial scientists and biochemists who have studied mineral formation in an attempt to understand how biogenic silica is formed, often in the presence of proteins and long chain polyamines. This article is at the interface of these seemingly distinct research areas. Here we investigate the effect of a range of amines in globally undersaturated silicon environments. Results are presented on the effect of amine-containing molecules on the formation of silica from undersaturated solutions of orthosilicic acid and globally undersaturated silicon environments. We sought to address two questions: can silica be precipitated/harvested from undersaturated solutions, and can we identify the silicon species that are most active in silica formation? We demonstrate that none of the bioinspired additives investigated here (e.g., poly(allylamine hydrochloride), pentaethylenehexamine, and propylamines) have any influence on orthosilicic acid at undersaturated concentrations. However, under globally undersaturated silicon concentrations, small molecules and polymers containing amine groups were able to interact with oligomers of silicic acid to either generate aggregated materials that can be isolated from solution or increase rates of oligomer dissolution back to orthosilicic acid. Additional outcomes of this study include an extended understanding of how polyelectrolytes and small molecules can promote and/or inhibit silica dissolution and a new method to explore how (bio)organic molecules interact with a forming mineral phase.