Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

SERS activity and stability of the most frequently used silver colloids

Larmour, I. A. and Faulds, K. and Graham, D. (2012) SERS activity and stability of the most frequently used silver colloids. Journal of Raman Spectroscopy, 43 (2). pp. 202-206. ISSN 0377-0486

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Single-molecule detection by surface-enhanced resonance Raman scattering (SERRS) spectroscopy has been demonstrated for a variety of molecules. The detection of single molecules that do not have a resonance contribution, SERS, has been shown in the case of adenine. However, when colloidal particles isolated on planar substrates are used as the enhancing medium, the presence of anomalous signals significantly complicates the analysis of the spectra. Selection of a silver colloid that minimizes these spurious signals should improve the ultra-sensitive detection of non-resonant single molecules by SERS. A range of silver colloids, prepared by different methods, were investigated with respect to their activity and stability. Minimal anomalous signals were obtained from hydroxylamine-reduced silver colloids, which suggests that this colloid will be better for ultra-sensitive SE(R)RS experiments compared to the more common citrate- and borohydride-reduced silver colloids.