Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments

Tyrrell, Matthew and Campanoni, Prisca and Sutter, Jens and Pratelli, Réjane and Paneque, Manuel and Sokolovski, Sergei and Blatt, Michael R (2007) Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. Plant Journal, 51 (6). pp. 1099-1115. ISSN 0960-7412

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Vesicle traffic underpins cell homeostasis, growth and development in plants, and is facilitated by a superfamily of proteins known as SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors] that interact to draw vesicle and target membrane surfaces together for fusion. Structural homologies, biochemical and genetic analyses have yielded information about the localization and possible roles of these proteins. However, remarkably little evidence is yet available that speaks directly to the functional specificities of these proteins in selected trafficking pathways in vivo. Previously, we found that expressing a cytosolic (so-called Sp2) fragment of one plasma membrane SNARE from tobacco and Arabidopsis had severe effects on growth, tissue development and secretory traffic to the plasma membrane. We have explored this dominant-negative approach further to examine the specificity and overlaps in Sp2 activity by generating a toolbox of truncated SNARE constructs and antibodies for transient expression and analysis. Using a quantitative ratiometric approach with secreted green fluorescent protein (secGFP), we report here that traffic to the plasma membrane is suppressed selectively by Sp2 fragments of plasma membrane SNAREs AtSYP121 and AtSYP122, but not of the closely related SNARE AtSYP111 nor of the SNARE AtSYP21 that resides at the pre-vacuolar compartment (PVC). By contrast, traffic of the YFP-tagged aquaporin fusion protein TIP1;1-YFP to the tonoplast was blocked (leading to its accumulation in the PVC) when co-expressed with the Sp2 fragment of AtSYP21, but not when co-expressed with that of AtSYP121. Export of secGFP was also sensitive to the Sp2 fragment of the novel, plant-specific SNARE AtSYP71 that was recently found to be present in detergent-resistant, plasma membrane fractions. Co-incubation analyses of the plasma membrane SNAREs with the regulatory subdomain included within the Sp2 fragments showed activity in destabilizing protein complexes, but only with the complementary SNAREs. We conclude that the Sp2 fragment action accurately reflects the known specificity and targeting of these SNAREs, implies functional overlaps that are of potential physiological interest, and underscores the use of a dominant-negative strategy in functional studies of a major subfamily of SNAREs in plants.