
Noname manuscript No.
(will be inserted by the editor)

A Computational Analysis of Lower Bounds for Big
Bucket Production Planning Problems

Kerem Akartunalı · Andrew J. Miller

the date of receipt and acceptance should be inserted later

Abstract In this paper, we analyze a variety of approaches to obtain lower
bounds for multi-level production planning problems with big bucket capaci-
ties, i.e., problems in which multiple items compete for the same resources. We
give an extensive survey of both known and new methods, and also establish
relationships between some of these methods that, to our knowledge, have not
been presented before. As will be highlighted, understanding the substructures
of difficult problems provide crucial insights on why these problems are hard
to solve, and this is addressed by a thorough analysis in the paper. We con-
clude with computational results on a variety of widely used test sets, and a
discussion of future research.
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1 Introduction

Production planning problems have drawn considerable interest from both re-
searchers and practitioners since the seminal paper of Wagner and Whitin [48].
These problems search for the production plan with the minimum total cost
(fixed charges such as setup costs and linear charges such as inventory holding
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costs) that satisfies customer demand and follows restrictions of the produc-
tion environment such as those imposed by capacities. The focus of this paper
is on multi-level, multi-item production planning problems with “big bucket”
capacities, i.e., each resource is shared by multiple items and different items
can be produced in a specific time period. These real-world problems are com-
plicated and computationally challenging to solve, often having complicated
BOM (Bills of Materials) structures, where the BOM details which items are
required to produce each item. The BOM often has multiple levels, where the
last level can be thought of as final products, the previous level can be thought
of as components required to make final products, and so forth.

Let NT , NI and NK be the number of periods, items, and machine types,
respectively. We assume that each machine type operates only on one level,
and each level can employ a number of machine types. Note that if a compo-
nent appears in two or more levels, then it is assumed to be a different item
in each different level. The set endp indicates all end-items, i.e. items with
external demand; the other items are assumed to have only internal demand.
(No generality lost, since any item that has both internal and external demand
can be modeled as two distinct items that share a setup variable.) Let xi

t, y
i
t,

and sit represent production, setup, and inventory variables for item i in pe-
riod t, respectively. The setup and inventory cost coefficients are indicated by
f i
t and hi

t for each period t and item i. Note that production costs might be
also included in the problem in a similar fashion to inventory holding costs.
The parameter δ(i) represents the set of immediate successors of item i, and
the parameter rij represents the number of items required of i to produce one
unit of j. Note that rij is defined not only for immediate dependencies, but for
all dependencies between items i and j. The parameter dit is the demand for
end-product i in period t, and dit,t′ is the total demand between t and t′, i.e.,

dit,t′ =
∑t′

t̄=t dt̄. The parameter aik represents the time necessary to produce

one unit of i on machine k, and ST i
k is the setup time for item i on machine

k, which has a capacity of Ck
t in period t. Note that each item is processed by

a preassigned machine, and we assume that each item is assigned only to one
machine (hence, for an item i′ that is not processed on a machine k′, ai

′

k′ = 0

and ST i′

k′ = 0). Let M i
t be a big number. Then the formulation of the basic
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model follows:

min

NT∑
t=1

NI∑
i=1

f i
ty

i
t +

NT∑
t=1

NI∑
i=1

hi
ts

i
t (1)

s.t. xi
t + sit−1 − sit = dit t ∈ [1, NT ], i ∈ endp (2)

xi
t + sit−1 − sit =

∑
j∈δ(i)

rijxj
t t ∈ [1, NT ], i ∈ [1, NI]\endp (3)

NI∑
i=1

(aikx
i
t + ST i

ky
i
t) ≤ Ck

t t ∈ [1, NT ], k ∈ [1, NK] (4)

xi
t ≤ M i

ty
i
t t ∈ [1, NT ], i ∈ [1, NI] (5)

y ∈ {0, 1}NT×NI (6)

x ≥ 0 (7)

s ≥ 0 (8)

The constraints (2) and (3) ensure production balance and demand satis-
faction for end-items and intermediate items respectively. Note that for the
simplicity of the formulation, we assume lead times to be zero (this does not
lose generality; if lead times ∆i for an item i exist, then this can be be in-
troduced in these constraints simply by replacing xi

t variables with xi
t−∆i .).

W.l.o.g., we also assume the initial inventories to be zero. The constraints (4)
are the big bucket capacity constraints, (5) ensure that the setup variable is
set to be 1 if there is positive production, and finally (6), (7), and (8) provide
the integrality and nonnegativity requirements. Note that we can define M i

t

as follows, where k ∈ [1, NK] such that aik ̸= 0:

M i
t = min(dit,NT ,

Ck
t − ST i

k

aik
) i ∈ endp

M i
t = min(

∑
j∈endp

rijdjt,NT ,
Ck

t − ST i
k

aik
) i ∈ [1, NI]\endp

We next define an echelon reformulation of the problem, see e.g. Pochet and
Wolsey [38]. Our motivation for defining this reformulation is that it clearly
exhibits the single-item structure that is present for each item, and it therefore
enables us to apply results for single-item models to the multi-level model. We
first define echelon demand parameters Di

t and echelon stock variables Ei
t :

Di
t = dit +

∑
j∈δ(i)

rijDj
t t ∈ [1, NT ], i ∈ [1, NI] (9)

Ei
t = sit +

∑
j∈δ(i)

rijEj
t t ∈ [1, NT ], i ∈ [1, NI] (10)

Note that for (9) to be well-defined, we let dit = 0 for all i ∈ [1, NI]\endp.
Substituting (10) into (2) and (3) for sit, and using the definition (9), we obtain
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an equation that can replace (2) and (3) in the original formulation:

xi
t + Ei

t−1 − Ei
t = Di

t t ∈ [1, NT ], i ∈ [1, NI] (11)

To satisfy (8), we add the following constraints:

Ei
t ≥

∑
j∈δ(i)

rijEj
t t ∈ [1, NT ], i ∈ [1, NI] (12)

E ≥ 0 (13)

Finally, to eliminate the inventory variable s, we define echelon inventory
holding cost Hj

t = hj
t −
∑NI

i=1 r
ijhi

t and replace the objective function (1) with

NT∑
t=1

NI∑
i=1

f i
ty

i
t +

NT∑
t=1

NI∑
i=1

Hi
tE

i
t (14)

We can therefore define the feasible region of the production planning prob-
lem as X = {(x, y, E)|(4) − (7), (11)− (13)}, which will be referred in the
remainder of the paper as the “basic formulation”. The production planning
problem can be defined as Z = min{(14)|(x, y, E) ∈ X}. We could easily
include overtime (i.e., extra capacity that can be bought with an additional
cost) or backlogging (i.e., satisfying demand later than requested by the cus-
tomer with a cost for customer dissatisfaction) variables to generalize this ba-
sic model, and some of the test problems we consider in Section 4 incorporate
them.

For simplicity, we will sometimes use conv(a) to denote conv((x, y, E)|(a)),
where (a) is a set of constraints. For example, {(x, y)|(7) ∩conv((6))} repre-
sents {(x, y)|(7)} ∩ conv({(x, y)|(6)}) in our notation.

1.1 Literature Review

Even the capacitated version of the single-item production planning problem
is NP-hard (Florian et al. [19] and Bitran and Yanasse [11]) and therefore
dynamic programming algorithms are only limited to some special cases, see
e.g. Zangwill [51], Florian and Klein [18], Federgruen and Tzur [16]. There-
fore, heuristic algorithms have been employed by many researchers with the
hope of obtaining good solutions in acceptable computational times. Heuristic
frameworks in general use some decomposition ideas, such as Lagrangian-based
decomposition (e.g. Trigeiro et al. [46], Tempelmeier and Derstroff [44]), for-
ward scheme and relax-and-fix (e.g. Belvaux and Wolsey [7], Stadtler [43],
Federgruen et al. [17], Akartunalı and Miller [1]) and coefficient modification
(e.g. Katok et al. [22], Van Vyve and Pochet [47]). The main disadvantages of
the heuristic algorithms (unless based on exact methods such as Lagrangian
relaxation) are the lack of solution quality guarantee and the lack of useful
insights about basic problem structures.
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Mathematical programming results on production planning problems have
usually focused on special cases such as single-item problems, and they have
been limited for problems with big bucket capacities. We will briefly discuss
these techniques in two subgroups: 1) Valid inequalities that are added into
the original formulation using separation algorithms, and 2) Extended refor-
mulations that solve the problem in a different variable space.

An early polyhedral study that defines problem-specific valid inequalities
for production planning problems is the study of Barany et al. [5], which de-
scribes fully the convex hull of the single-item uncapacitated problem. Some
special cases of single-item problems are investigated in Küçükyavuz and
Pochet [24] (uncapacitated, backlogging), Pochet and Wolsey [37] (constant
capacities), Loparic et al. [26] (uncapacitated, sales and safety stocks), and
Constantino [13] (uncapacitated, start-up costs). Atamtürk and Muñoz [4]
provide a recent polyhedral study that investigates the bottleneck cover struc-
ture in capacitated single-item problems, and Pochet and Wolsey [36] extend
some single-item results to the multi-level case. On the other hand, Miller et
al. [32,33] provide rare results on multi-item problems with big bucket ca-
pacities, where the authors study single-period relaxations and propose valid
inequalities. In a recent study, Levi et al. [25] study a version of the capaci-
tated multi-item problem and they propose an approximation algorithm based
on generating flow cover inequalities and randomized rounding.

A compact extended reformulation for production planning is the facility
location reformulation of Krarup and Bilde [23], which defines the convex hull
of the uncapacitated single-item problem when projected to original variable
space. Eppen and Martin [15] study the shortest path reformulation, which is
of smaller size compared to facility location reformulation. Rardin and Wolsey
[39] investigate the multi-commodity reformulation for fixed-charge network
problems. Belvaux and Wolsey [8] and Wolsey [50] are recent studies about
reformulations and modeling issues. Anily et al. [3] provide tight reformulations
for some special cases of the multi-item problem with joint setups.

Finally, we note that mathematical programming results on production
planning problems are not only limited to these two approaches. Lagrangian
relaxation has been used by Billington et al. [9] in a Branch&Bound scheme,
as well as in the heuristic approach of Thizy and Van Wassenhove [45]. On the
other hand, Dantzig-Wolfe decomposition has been in use since the paper of
Manne [28], with advancements of Bitran and Matsuo [10] and very recently
of Degraeve and Jans [14]. We refer the interested reader to Buschkühl et al.
[12] for a thorough and very recent review.

1.2 Motivation and Organization of the Paper

In spite of this research, big bucket production planning problems remain hard
to solve. Part of the reason for this is that most previous research focuses on
developing and using results for single-item models, which are not sufficient
to capture the fundamental sources of complexity of big bucket problems. The
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primary goals of this paper are to evaluate the strength of the relaxations
defined by different mathematical programming techniques and to investigate
why big bucket production planning problems are hard to solve in practice.
More specifically, we are not primarily interested in extending single-item re-
sults to general production planning problems, but we want to discover re-
lationships between different methods for generating lower bounds and the
fundamental substructures that often make these methods insufficient to solve
these problems well. We will consider all known methods for generating lower
bounds of which we are aware, and we will investigate previously untried meth-
ods as well.

In Section 2, we provide a comprehensive survey of lower bounding methods
presented in previous research, and we discuss previously untested methods as
well. Section 3 is devoted to theoretical comparisons of different techniques,
which can provide structural insight into multi-level big bucket problems. In
Section 4, we present extensive computational comparisons obtained using
widely used data sets. We conclude with future directions in Section 5.

2 Valid Inequalities, Reformulations, and Relaxations

In this section we discuss different approaches to obtain lower bounds. These
methods vary from defining valid inequalities and reformulations to the use of
Lagrangian relaxation.

2.1 Valid Inequalities

The first technique we consider is the use of (ℓ, S) inequalities of Barany et al.
[5] defined for single-item problems, and generalized by Pochet and Wolsey [36]
to multi-level problems using the echelon reformulation. These can be defined
as follows:∑

t∈S

xi
t ≤

∑
t∈S

Di
t,ℓy

i
t + Ei

ℓ ℓ ∈ [1, NT ], i ∈ [1, NI], S ⊆ [1, ℓ] (15)

Since these inequalities are valid for the single-item submodels defined by
each item, they are valid for the multi-item problem as well. Although there
is an exponential number of these inequalities, a simple polynomial separation
algorithm exists as shown in Barany et al. [6], see Algorithm 1. As will be
discussed later, there exist stronger formulations for the multi-level problem
than that provided by using the (ℓ, S) inequalities alone, but (ℓ, S) inequalities
have good practical use, especially when considering large problems.

The feasible region associated with this formulation can be defined as
XLS = {(x, y, E)|(4)− (7), (11)− (13), (15)}, and the problem can be defined
as ZLS = min{(14)|(x, y, E) ∈ XLS}.
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Algorithm 1: (ℓ, S) separation
Input: LP relaxation solution (x∗, y∗, E∗)
Output: Violated (ℓ, S) inequalities
for i=1 to NI

for ℓ = 1 to NT
Initialize S ← {}
for t=1 to ℓ

if x∗i
t > Di

t,ℓy
∗i
t

S ← S ∪ {t}
if

∑
t∈S x∗i

t >
∑

t∈S Di
t,ℓy

∗i
t + E∗i

ℓ

Add the violated (ℓ, S) inequality

2.2 Reformulations

The next technique we consider is the facility location reformulation, originally
defined by Krarup and Bilde [23] for the single-item problem. This reformu-
lation divides production according to which period it is intended for. This
requires first defining new variables ui

t,t′ , which indicate the production of
item i in period t to satisfy the demand of period t′, where t′ ≥ t. The fol-
lowing constraints should be added into the basic formulation to finalize the
reformulation:

ui
t,t′ ≤ Di

t′y
i
t t ∈ [1, NT ], t′ ∈ [t,NT ], i ∈ [1, NI] (16)

t′∑
t=1

ui
t,t′ = Di

t′ t′ ∈ [1, NT ], i ∈ [1, NI] (17)

xi
t′ =

NT∑
t=t′

ui
t′,t t′ ∈ [1, NT ], i ∈ [1, NI] (18)

u ≥ 0 (19)

This formulation adds O(NT 2NI) variables and O(NT 2NI) constraints
to the problem. One advantage of using the new variables ui

t,t′ is that we can
rewrite the capacity constraint (4) as follows:

NI∑
i=1

(aik(

NT∑
t′=t

ui
t,t′) + ST i

ky
i
t) ≤ Ck

t t ∈ [1, NT ], k ∈ [1, NK] (20)

This, along with constraints (16), can considerably help a state-of-the-art
MIP solver generate knapsack cover cuts. Specifically, note that by adding∑NI

i=1 a
i
kD

i
t,NT y

i
t on both sides and after rearranging the terms, (20) can be

rewritten as

NI∑
i=1

(aikD
i
t,NT + ST i

k)y
i
t ≤ Ck

t +

(
NI∑
i=1

NT∑
t′=t

aik(D
i
t′y

i
t − ui

t,t′)

)
(21)
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For each fixed pair of (t, k), and for any subsets I ⊆ {1, ..., NI} and T ⊆
{t, ..., NT}, we may generate cover cuts for each of the following continuous
0-1 knapsack constraints (which is obtained in the same fashion as (21), but
only for the subsets I and T and the “continuous variable” is highlighted in
parenthesis on the right hand side):

∑
i∈I

(aik(
∑
t′∈T

Di
t′) + ST i

k)y
i
t ≤ Ck

t +

(∑
i∈I

∑
t′∈T

aik(D
i
t′y

i
t − ui

t,t′)

)
(22)

Note that because of (16), the expression in the parenthesis on the right-
hand side of (21) or (22) can be considered as a single nonnegative continu-
ous variable. Binary knapsack constraints with a single nonnegative continu-
ous variable were studied by Marchand and Wolsey [29,30] (see also Richard
et al. [40,41]). Commercial solvers use the kinds of results they present to
efficiently find subsets I and T and generate cover cuts that will approxi-

mate conv(X
(t,k)
KN ), where X

(t,k)
KN = {(y, u)|(6), (16), (19), (20)} is the feasible

region of the intersection of these continuous 0-1 knapsack problems for a

fixed (t, k) pair. Note that we can also define it as X
(t,k)
KN = projy,uX̄

(t,k)
KN with

X̄
(t,k)
KN = {(x, y, E, u)|(6), (16), (19), (20), (18), (11)}, just for the convenience

of having it in higher dimension. Related to X̄
(t,k)
KN , we will define X̄

(t,k,{t(i)})
KN ,

for which we first choose a t(i) ∈ [t,NT ] for all i ∈ [1, NI], for a given t. Then,
we define

ui
t,t1 ≤ Di

t1y
i
t t1 ∈ [t,NT ], i ∈ [1, NI] (23)

ui
t1,t2 ≤ Di

t2y
i
t1 t1 ∈ [t+ 1, t(i)], t2 ∈ [t1, t(i)], (24)

i ∈ [1, NI]

xi
t =

NT∑
t1=t

ui
t,t1 i ∈ [1, NI] (25)

Ei
t−1 =

t−1∑
t1=1

NT∑
t2=t

ui
t1,t2 i ∈ [1, NI] (26)

xi
t + Ei

t−1 +

t(i)∑
t1=t+1

t(i)∑
t2=t1

ui
t1,t2 ≥ Di

t,t(i) i ∈ [1, NI] (27)

Then, X̄
(t,k,{t(i)})
KN = {(x, y, E, u)|(6), (19), (20), (23)− (27)}. Note that we

will use this explicit definition for the purposes of proving a key proposition
in the next section.

On a separate note, basic continuous cover inequalities can also be gener-
ated as MIR inequalities, which are known to be effective for general mixed
integer programs (see e.g. Günlük and Pochet [20]). Of course, our approach
will increase the problem size and it might easily become so large that it cannot
be solved to optimality in an acceptable time. However, using this approach for
the purpose of generating lower bounds can yield insights into the structure of
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our problems. This idea was initially suggested for single-level, single-machine
problems by Van Vyve 1. To the best of our knowledge, this approach has not
been tested for multi-level problems before.

The feasible region associated with the facility location reformulation can
be defined as XFL = {(x, y, E, u)|(5) − (7), (11) − (13), (16) − (20)}, and the
associated problem as ZFL = min{(14)|(x, y, E, u) ∈ XFL}. On the other

hand, generating all cover cuts approximates
∩NT

t=1

∩NK
k=1 conv(X

(t,k)
KN ), which

is an approximation for conv(
∩NT

t=1

∩NK
k=1 X

(t,k)
KN ). This leads us to define the

polyhedron:

XKN
FL = {(x, y, E, u)|(5), (7), (11)− (13), (17), (18)} ∩ conv(

NT∩
t=1

NK∩
k=1

X
(t,k)
KN )

and the associated problem ZKN
FL = min{(14)|(x, y, E, u) ∈ XKN

FL }.
Next, we discuss the single-period relaxation of Miller et al. [32,33], called

as PI (Preceding Inventory). To describe the single-period formulation, for a
given machine k ∈ [1, NK] and a given time period t ∈ [1, NT ], we choose a
time period t(i) ≥ t for each i ∈ [1, NI]. Then we define

Si = Ei
t−1 +

t(i)∑
t̂=t+1

Di
t̂,t(i)

yi
t̂

i ∈ [1, NI]

Di = Di
t,t(i) i ∈ [1, NI]

Then, the single-period formulation can be written as follows:

xi
t + Si ≥ Di i ∈ [1, NI] (28)

xi
t ≤ M i

ty
i
t i ∈ [1, NI] (29)

NI∑
i=1

(aikx
i
t + ST i

ky
i
t) ≤ Ck

t (30)

xi
t, S

i ≥ 0 i ∈ [1, NI] (31)

yit ∈ {0, 1} i ∈ [1, NI] (32)

We can define X
(t,k,{t(i)})
PI = {(x, y, S)|(28) − (32)} as the feasible region

associated with a set of t(i) values, and X
(t,k)
PI =

∩
{t(i)} X

(t,k,{t(i)})
PI represents

the feasible region for a given (t, k) pair. Note the similarity between this

feasible region and X
(t,k)
KN we discussed earlier. Miller et al. [32,33] define valid

inequalities (namely cover and reverse cover inequalities) for PI, which are
naturally valid for the original problem as well, and these inequalities can be

seen as an approximation for conv(X
(t,k)
PI ), which is of interest in our context

as providing a lower bound for the original problem when all single-period
relaxations are considered for a problem.

1 Personal communication.
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Next, we define the shortest path reformulation of Eppen and Martin [15].
In this formulation, which was originally defined for single-item uncapacitated
models, the variables zit,t′ are 1 if production of i in period t satisfies all the
demand for i in periods t, ..., t′ but not beyond t′, and 0 otherwise. Note, as
a result of the constraints (5) and zero initial inventories, the relationship
between the new and original variables is as follows:

xi
t =

NT∑
t′=t

Di
t,t′z

i
t,t′ t ∈ [1, NT ], i ∈ [1, NI] (33)

For the multi-level capacitated problem, we do not have the same optimal-
ity properties that we have for the single-item problem; we therefore let the z
variables take fractional values as they represent “the fraction of demand in
periods t, ..., t′ satisfied by production in period t”. Also, using the echelon in-
ventory holding costs Hi

t , we define total inventory costs cit,t′ = Di
t,t′
∑NT

j=t H
i
j .

The formulation is then as follows:

min

NT∑
t=1

NI∑
i=1

f i
ty

i
t +

NT∑
t=1

NT∑
t′=t

NI∑
i=1

cit,t′z
i
t,t′ (34)

s.t. 1 =
NT∑
t=1

zi1,t i ∈ [1, NI] (35)

t′−1∑
t=1

zit,t′−1 =
NT∑
t=t′

zit′,t t′ ∈ [2, NT ], i ∈ [1, NI] (36)

NT∑
t′=t

zit,t′ ≤ yit t ∈ [1, NT ], i ∈ [1, NI] (37)

NI∑
i=1

(ST i
ky

i
t + aik

NT∑
t′=t

Di
t,t′z

i
t,t′) ≤ Ck

t t ∈ [1, NT ], k ∈ [1, NK] (38)

t′∑
t=1

NT∑
t̂=t

(Di
t,t̂
zi
t,t̂

−
∑

j∈δ(i)

rijDj

t,t̂
zj
t,t̂
) ≥ di1,t′ t′ ∈ [1, NT ], i ∈ [1, NI] (39)

z ≥ 0 (40)

y ∈ {0, 1}NTxNI (41)

The constraints (35) and (36) are the flow balance constraints, (37) provide
the relationship between the linear and binary variables, (38) is the capacity
constraint, (39) ensures the relationship between different levels, and finally
(40) and (41) provide the nonnegativity and integrality constraints. Note that
for our multi-level problem, we derive the constraint (39) as follows: Using
(11) and (12), and the assumption of zero initial inventory, we obtain

t′∑
t=1

(xi
t −Di

t) ≥
t′∑

t=1

∑
j∈δ(i)

rij(xj
t −Dj

t ) (42)
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Substituting (33) into (42) and rewriting results in (39). Note that this
formulation adds as many variables as the facility location reformulation, but
number of constraints is only O(NT ×NI). However, this formulation is not
necessarily easier to solve, in part because the new constraints are compara-
tively dense and the coefficients on the new variables comparatively large.

The feasible region associated with this formulation can be defined as
XSP = {(y, z)|(35)−(41)}, and the problem can be defined as ZSP = min{(34)|
(y, z) ∈ XSP }. Part of our motivation for completely substituting the x and
E variables out of the formulation is that relaxing the constraints (35), (36),
and (39) decomposes the problem into NT distinct subproblems, one for each
time period (an analogous observation was first made for single-level problems
by Jans and Degraeve [21]). We will discuss this property in more detail later.

Next, we consider the multi-commodity reformulation proposed by Rardin
and Wolsey [39]. This approach is originally described for fixed-charge network
flow problems. Like the facility location reformulation, it divides production
using destination information, but since we have multiple levels, it also in-
cludes information about which end-item in the BOM it is produced for. Stock
variables are also divided in a similar fashion. Thus, the new variables wi,j

t,t′

indicate production of item i in period t to satisfy the demand of end-item j
in period t′, t′ ≥ t, and the new variables vi,jt,t′ indicate the inventory of item i
held over at the end of period t to satisfy demand of end-item j in period t′,
t′ > t. The following constraints should be added to the basic formulation to
finalize the reformulation:

xi
t′ =

NT∑
t=t′

∑
j∈endp

wi,j
t′,t t′ ∈ [1, NT ], i ∈ [1, NI] (43)

wi,j
t,t′ ≤ rijdjt′y

i
t t ∈ [1, NT ], t′ ∈ [t,NT ], (44)

i ∈ [1, NI], j ∈ endp

vi,it−1,t + wi,i
t,t = dit t ∈ [1, NT ], i ∈ endp (45)

vi,it−1,t′ + wi,i
t,t′ = vi,it,t′ t ∈ [1, NT − 1], t′ ∈ [t+ 1, NT ], (46)

i ∈ endp

vi,qt−1,t + wi,q
t,t =

∑
j∈δ(i)

rijwj,q
t,t t ∈ [1, NT ], i ∈ [1, NI]\endp, (47)

q ∈ endp

vi,qt−1,t′ + wi,q
t,t′ = vi,qt,t′ +

∑
j∈δ(i)

rijwj,q
t,t′ t ∈ [1, NT − 1], t′ ∈ [t+ 1, NT ], (48)

i ∈ [1, NI]\endp, q ∈ endp

w, v ≥ 0 (49)

The constraints (43) indicate the relation between the new and old vari-
ables, (44) provide the relationship between the linear and binary variables,
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(45) and (46) are demand flow balance constraints for end items, (47) and (48)
are demand flow balance constraints for non-end items, and finally (49) pro-
vide the nonnegativity constraints. This reformulation introduces O(NT 2NI2)
additional variables and O(NT 2NI2) additional constraints. This is the main
disadvantage of this reformulation, which can easily become computationally
intractable as the problem size grows. However, it is the tightest compact, i.e.,
polynomial size, reformulation that we know for the problems in question.

The feasible region associated with this formulation can be defined as
XMC = {(x, y, E,w, v)|(4) − (7), (11) − (13), (43) − (49)}, and the problem
can be defined as ZMC = min{(14)| (x, y, E,w, v) ∈ XMC}.

2.3 Relaxations

Next, we discuss three approaches that employ Lagrangian relaxation to obtain
structured subproblems and from those lower bounds for the original problem.
The first approach is to relax the capacity constraints (4), and obtain

LR1(λ) =min
NT∑
t=1

NI∑
i=1

f i
ty

i
t +

NT∑
t=1

NI∑
i=1

HiEi
t

−
NT∑
t=1

NK∑
k=1

λk
t

(
Ck

t − (
NI∑
i=1

aikx
i
t + ST i

ky
i
t)

)
(50)

subject to (x, y, E) ∈ XLR1

where XLR1 = {(x, y, E)|(5)−(7), (11)−(13)}. Thus, the Lagrangian subprob-
lem is a multi-item, multi-level uncapacitated production planning problem.
The Lagrangian dual problem is

LD1 = max
λ≥0

LR1(λ) (51)

The next Lagrangian relaxation approach relaxes the constraints linking
separate levels, i.e. constraints (12), to obtain

LR2(µ) =min

NT∑
t=1

NI∑
i=1

f i
ty

i
t +

NT∑
t=1

NI∑
i=1

HiEi
t

−
NT∑
t=1

NI∑
i=1

µi
t

Ei
t −

∑
j∈δ(i)

rijEj
t

 (52)

subject to (x, y, E) ∈ XLR2

where XLR2 = {(x, y, E)| (4) − (7), (11), (13)}. The Lagrangian subproblem
therefore decomposes into NK disjoint multi-item, big bucket single-machine
problems, one for each machine. The Lagrangian dual problem becomes

LD2 = max
µ≥0

LR2(µ) (53)
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Finally, the last Lagrangian approach extends the work of Jans and De-
graeve [21] for single-level problems, which itself uses the shortest path re-
formulation of Eppen Martin [15]. Jans and Degraeve [21] simply relaxed the
constraints linking time periods, yielding disjoint single-period subproblems.
However, the problem in the multi-level case is that the constraints linking
levels also involve multiple periods. Therefore, decomposing the problem into
disjoint subproblems for each period is not possible, unless all constraints link-
ing levels are also dualized. We dualize the constraints (35), (36) and (39) in
the shortest path reformulation to obtain

LR3(β, γ) =min
NT∑
t=1

NI∑
i=1

f i
ty

i
t +

NT∑
t=1

NT∑
t′=t

NI∑
i=1

cit,t′z
i
t,t′ −

NT∑
i=1

βi
1

(
1−

NT∑
t=1

zi1,t

)

−
NI∑
i=1

NT∑
t′=2

βi
t′

t′−1∑
t=1

zit,t′−1 −
NT∑
t=t′

zit′,t

 (54)

−
NI∑
i=1

NT∑
t′=1

γi
t′

 t′∑
t=1

NT∑
t̂=t

(Di
t,t̂
zi
t,t̂

−
∑

j∈δ(i)

rijDj

t,t̂
zj
t,t̂
)− di1,t′


subject to (y, z) ∈ XLR3

where XLR3 = {(y, z)| (37), (38), (40), (41)}. It is easy to note that the La-
grangian subproblem decomposes into NK × NT disjoint capacitated multi-
item, single-machine, single-period problems. The Lagrangian dual is

LD3 = max
γ≥0,β

LR3(β, γ) (55)

In the next section we provide theoretical comparisons for the various ap-
proaches we have described.

3 Exploring Relationships

Let the superscript LP indicate the LP relaxation of a problem, i.e., the binary
variables y relaxed to be continuous with the bounds 0 ≤ y ≤ 1. For example,
ZLP
LS is the problem ZLS with the integrality requirements for y variables

relaxed. Similarly, XLP
LS is the polyhedron of the LP relaxation of XLS .

Theorem 1 (Akartunalı and Miller [1]) ZLP
LS = ZLP

FL = ZLP
SP , i.e., the

(ℓ, S) inequalities, the facility location reformulation, and the shortest path
reformulation all provide the same lower bound for the original problem.

For the proof of the theorem, please refer to Akartunalı [2]. The proof uses
Lagrangian duality and the fact that all these formulations provide equal lower
bounds in the single-item case. See Krarup and Bilde [23], Eppen and Martin
[15], and Barany et al. [6] for the convex hull and integrality proofs in the
single-item case.
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Theorem 2 ZLP
MC ≥ ZLP

FL , i.e., the multi-commodity reformulation provides
a lower bound that is at least as strong as that provided by the facility location
reformulation. If the problem consists of a single level, then ZLP

MC = ZLP
FL .

Although this result has been known by at least some researchers since the
publication of Rardin and Wolsey [39], it has never been formally stated and
proven, to the best of our knowledge. We therefore provide a proof for the sake
of completeness.

Proof We will prove this by showing that projx,y,E(X
LP
MC) ⊆ projx,y,E(X

LP
FL )

for the multi-level case. Let (v∗, w∗, x∗, y∗, E∗) ∈ XLP
MC . First, observe that we

can eliminate v∗ and rewrite (45)-(48) in terms of w∗, as follows:

t=t′∑
t=1

w∗i,j
t,t′ = rijdjt′ t′ ∈ [1, NT ], i ∈ [1, NI], j ∈ endp (56)

Now, let

u∗i
t,t′ =

∑
j∈endp

w∗ij
t,t′ (57)

Obviously u∗ ≥ 0 since w∗ ≥ 0. Since w∗ satisfies (43), x∗i
t =

∑NT
t′=t u

∗i
t,t′ .

Similarly, summing (56) over j ∈ endp, we obtain
∑t′

t=1 u
∗i
t,t′ =

∑
j∈endp r

ijdjt′

= Di
t′ , where the second equation follows from the definition of echelon de-

mand (9). Finally, using (44) and (57), we obtain u∗i
t,t′ =

∑
j∈endp w

∗ij
t,t′ ≤

(
∑

j∈endp r
ijdjt′)y

∗i
t = Di

t′y
∗i
t. This shows that (u

∗, x∗, y∗, E∗) ∈ XLP
FL . Hence,

projx,y,E(X
LP
MC) ⊆ projx,y,E(X

LP
FL ). ⊓⊔

The second part of the theorem can also be shown using the same technique
as in the proof of first theorem, i.e., using Lagrangian duality and the fact
that the multi-commodity reformulation and the facility location reformulation
provide equivalent lower bounds in the single-item case (see Eppen and Martin
[15] and Barany et al. [6]).

This theorem shows us theoretically that the multi-commodity reformu-
lation is stronger than the formulation defined by adding (ℓ, S) inequalities,
the facility location reformulation, and the shortest path reformulation. In
the next section, we will computationally address the question of “how much
stronger” for a variety of test problems.

So far we have made comparisons of different polyhedral approaches. Also
interesting are the relationships between the Lagrangian approaches and these
reformulations, as we investigate in the following results.

Theorem 3 ZLP
MC ≤ LD1.

In words, the lower bound obtained by the Lagrangian that relaxes the
capacity constraints is at least as strong as the lower bound obtained by multi-
commodity reformulation.
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Proof By the theorem related to the strength of the Lagrangian dual (see e.g.
Theorem 10.3 of Wolsey [49]),

LD1 = min{(14)|(x, y, E) ∈ (4) ∩ conv((5)− (7), (11)− (13))}

On the other hand,

ZLP
MC = min{(14)|(x, y, E,w, v) ∈ (4) ∩ {((5), (7), (11)− (13), (43)− (49))

∩ conv((6))}}

Observe that

{(x, y, E) ∈ conv((5)− (7), (11)− (13))} ⊆
projx,y,E{(x, y, E,w, v) ∈ {((5), (7), (11)− (13), (43)− (49)) ∩ conv((6))}}

This follows because conv((5)− (7), (11)− (13)) has integer extreme points
because the polyhedron is the convex hull of an integer feasible region. On the
other hand, {((5), (7), (11)−(13), (43)−(49))∩ conv((6))} does not necessarily
have integral extreme points. Therefore, ZLP

MC ≤ LD1. ⊓⊔

Theorem 4 ZLP
FL ≤ ZKN

FL ≤ LD2.

In words, the lower bound obtained by the Lagrangian that relaxes the
level linking constraints is at least as strong as the lower bound obtained by
the facility location reformulation strengthened to approximate the knapsack
convex hulls.

Proof The first relationship follows from the fact that ZKN
FL is obtained by

strengthening ZLP
FL with additional constraints. For the second relationship,

first observe that (using the same theorem as in the previous proof)

LD2 = min{(14)|(x, y, E) ∈ (12) ∩ conv((4)− (7), (11), (13))}

Observe also that

conv((4)− (7), (11), (13)) ⊆

projx,y,E

{
{(x, y, E, u)|(5), (7), (11), (13), (17), (18)} ∩ conv(

NT∩
t=1

NK∩
k=1

X
(t,k)
KN )

}

This concludes that ZKN
FL is not as strong as LD2. ⊓⊔

As mentioned before, generating cover cuts from (22) only approximates
the knapsack polyhedron and hence ZKN

FL is the best possible bound that can
be obtained by adding cover cuts to the LP relaxation of the facility location
reformulation.

Theorem 5 ZKN
FL = LD3.

We will use the following result for the proof of the theorem.
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Lemma 6 (Pochet and Wolsey [35]) All optimal solutions of the single-
item uncapacitated problem formulated using the facility location reformulation
have the following property:

ut,t′

Dt′
≥ ut,t′+1

Dt′+1
t ∈ [1, NT ], t′ ≥ t

Before starting the proof of Theorem 5, let S1 =
∩NT

t=1

∩NK
k=1 X

(t,k)
KN =

{(y, u)|(6), (16), (19), (20)} and S2 = {(y, z)|(37), (38), (40), (41)}. Also let
T1 = {(x, y, E, u)|((11)− (13), (18))∩ conv(S1)} and T2 = {(x, y, E, z)|((11)−
(13), (33))∩conv(S2)}. Note that S1 and S2 are integer feasible regions whereas
T1 and T2 are both polyhedra. Then, the proof of Theorem 5 follows.

Proof We will prove this by showing projx,y,E(T1) = projx,y,E(T2), and by
the fact that LD3 = min{(14)|(x, y, E, z) ∈ T2}.

First, let (x∗, y∗, E∗, u∗) ∈ T1 and hence (x∗, y∗, E∗) ∈ projx,y,E(T1).
Therefore, ∃pj = (xj , yj , Ej , uj) ∈ S1, j ∈ [1, J ], such that (x∗, y∗, E∗, u∗) =∑J

j=1 λjp
j for some λ ≥ 0,

∑J
j=1 λj = 1.

For all j ∈ [1, J ], let {zitNT }j =
{ui

tNT }j

Di
NT

, where t ∈ [1, NT ] and i ∈ [1, NI].

Then, define recursively {zit,t′}j =
{ui

t,t′}
j

Di
NT

−
∑NT

t̄=t′+1{zit,t̄}
j , for all t ∈ [1, NT ],

t′ = NT −1, ..., t and i ∈ [1, NI]. Since
∑NT

t′=t D
i
t,t′{zit,t′}j =

∑NT
t′=t{ui

t,t′}j and
uj satisfies (20), zj satisfies (38). Next, note that

NT∑
t′=t

{zit,t′}j =
{ui

t,t}j

Di
t

≤ {yit}j

where the last inequality is essentially (16). Finally, using Lemma 6, observe
that

{zit,t′}j =
{ui

t,t′}j

Di
t′

−
{u∗i

t,t′+1}j

Di
t′+1

≥ 0

Therefore, p̂j = (xj , yj , Ej , zj) ∈ S2, and using the same λ as before,

(x∗, y∗, E∗, z∗) =
∑J

j=1 λj p̂
j ∈ T2. Hence, (x

∗, y∗, E∗) ∈ projx,y,E(T2). We
conclude therefore that projx,y,E(T1) ⊆ projx,y,E(T2).

Now, let (x∗, y∗, E∗, z∗) ∈ T2 and hence (x∗, y∗, E∗) ∈ projx,y,E(T2).
Therefore, ∃qk = (xk, yk, Ek, zk) ∈ S2, k ∈ [1,K], such that (x∗, y∗, E∗, z∗) =∑K

k=1 µkq
k for some µ ≥ 0,

∑K
k=1 µk = 1.

For all k ∈ [1,K], let {ui
t,t′}k = Di

t′
∑NT

t̄=t′{zit,t̄}
k, where t ∈ [1, NT ], t′ ∈

[t,NT ], and i ∈ [1, NI]. Obviously, uk satisfies (19) since zk satisfies (40).

Since
∑NT

t′=t{ui
t,t′}k =

∑NT
t′=t D

i
t,t′{zit,t′}k and zk satisfies (38), uk satisfies (20).

Finally, note that

{ui
t,t′}k = Di

t′

NT∑
t̄=t′

{zit,t̄}
k ≤ Di

t′

NT∑
t̄=t

{zit,t̄}
k ≤ Di

t′{yit}k
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where the last inequality follows from (37).
Therefore, q̂k = (xk, yk, Ek, uk) ∈ S1, and using the same µ as before,

(x∗, y∗, E∗, u∗) =
∑K

k=1 µk q̂
k ∈ T1. Hence, (x

∗, y∗, E∗) ∈ projx,y,E(T1). There-
fore, projx,y,E(T2) ⊆ projx,y,E(T1). This concludes the proof. ⊓⊔

Corollary 7 LD3 ≤ LD2.

The proof for this corollary follows immediately from the Theorems 4 and
5. This result is our main motivation for skipping LD3 in the computational
tests discussed in the next section.

Proposition 8 For any given (t, k) pair and set of {t(i)} values,

projx,y,E(conv(X
(t,k,{t(i)})
PI )) = projx,y,E(conv(X̄

(t,k,{t(i)})
KN ))

This result, combined with Corollary 7, is our main motivation for omitting
computationally testing the cover and reverse cover inequalities from Miller et
al. [32,33] in the next section.

Proof First show projx,y,E(conv(X̄
(t,k,{t(i)})
KN )) ⊆ projx,y,E(conv(X

(t,k,{t(i)})
PI ))

for a given (t, k) pair and set of {t(i)} values. Let (x∗, y∗, E∗, u∗) ∈
conv(X̄

(t,k,{t(i)})
KN ). Then, we define S∗i = E∗i

t−1+
∑t(i)

t̂=t+1
Di

t̂,t(i)
y∗it̂. It is easy

to observe that (x∗, y∗, S∗) ∈ conv(X
(t,k,{t(i)})
PI ).

Next we prove projx,y,E(conv(X
(t,k,{t(i)})
PI )) ⊆ projx,y,E(conv(X̄

(t,k,{t(i)})
KN ))

for any given (t, k) pair and set of {t(i)} values. First, let (x∗, y∗, S∗) ∈
conv(X

(t,k,{t(i)})
PI ). We define first u∗i

t1,t2 = Di
t2y

∗i
t1 for all t1 ∈ [t + 1, t(i)]

and t2 ∈ [t1, t(i)]. Then, we define E∗i
t−1 = (S∗i −

∑t(i)

t̂=t+1
Di

t̂,t(i)
y∗it̂)

+. Fi-

nally, define u∗i
t,t′ = (min{Di

t′y
∗i
t, x

∗i
t −

∑t′−1
t̄=t u∗i

t,t̄})+ for all t′ ∈ [t, t(i)],
where they are calculated in the increasing order of t′. Then, we can observe

that (x∗, y∗, E∗, u∗) ∈ conv(X̄
(t,k,t(i))
KN ). ⊓⊔

4 Computational Results

4.1 Overview

In order to provide diversified results, we used the following test instances for
our computations:

– TDS instances: These test problems originate from Tempelmeier and
Derstroff [44] and Stadtler [43]. These include overtime variables in addition
to the formulation in Section 2. Sets A+ and B+ involve problems with
10 items and 24 periods, and sets C and D involve problems with 40 items
and 16 periods. Sets B+ and D include setup times. We chose the hardest
instances from each data set for our computations, i.e., for each data set,
we picked 10 assembly and 10 general instances with the highest duality
gaps according to results of Stadtler [43].
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– LOTSIZELIB instances: These are the multi-level instances of LOT-
SIZELIB [27]. These include big bucket capacities, and backlogging is also
allowed. The problems vary between 40 item, single end-item problems and
15 item, 3 end-item problems. All problems have 12 periods.

– Multi-LSB instances: We have generated 4 sets of test problems based
on the problem family described in Simpson and Erenguc [42], each set
having 30 instances with low, medium and high variability of demand. We
will refer to these sets as SET1, SET2, SET3, and SET4 in the remainder
of the paper. The main difference of these instances is that they consider
component commonality and hence joint setup variables for each “family of
item” (a set of items that are grouped together due to similarity) exist, i.e.,
setup time of a family of items is exhausted only once as soon as any item
from that family is produced. The original BOM structures and holding
costs of [42] are preserved, while the setup costs are removed. Moreover,
these instances have backlogging variables and hence increase the variety of
our test bed. Except for the problems in SET2, which consider a horizon of
24 periods, all the instances have 16 periods. The main difference between
SET1, SET2 and SET4 is about resource utilization factors, which are all
set over 100% for obtaining hard problem instances. All problems have 78
items and an assembly BOM structure, and all instances allow backlogging
to the last period. For more details about these instances, including a full
formulation, see Multi-LSB homepage [34].

Note that average duality gaps after default times (see next section for
more detail on “default times”) for the test sets of TDS and Multi-LSB are
provided in the Table 1 for an overview of problem complexity, where the basic
formulation is strengthened with all violated (ℓ, S) inequalities generated at
the root node of the Branch&Bound tree using Algorithm 1.

Table 1 Average duality gaps for TDS and Multi-LSB instances

A+ B+ C D SET1 SET2 SET3 SET4

25.28% 34.21% 35.40% 364.57% 17.40% 13.84% 236.36% 78.87%

The main goal of this section is to computationally test the results we have
theoretically proven and to observe how these strength relationships work in
practice. This not only provides us with information about how strong the
lower bounds actually are but also helps us to understand what prevents us
from improving them. All the test instances are run on a PC with an Intel
Pentium 4 2.53 GHz processor and 1 GB of RAM. All the formulations are
implemented using Xpress Mosel (Xpress-MP 2004C, Mosel version 1.4.1).

In evaluating Lagrangians, we do not exactly solve any of the Lagrangian
dual problems and solve an approximation instead, as detailed in the next para-
graph. The main reason to avoid calculating Lagrangian duals is the significant
computational effort needed, as this exact calculation will require subgradi-
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ent optimization to choose the optimal Lagrangian multipliers. Subgradient
optimization does not have a guarantee for convergence (e.g. noted by [21])
and it might require a very high number of iterations (each iteration being a
Lagrangian relaxation problem) to converge to a bound. This is prohibitive in
our case, as Lagrangian problems prove not to be easy to solve to optimality in
short computational times: As we will also see later in computational results,
even for the smaller TDS test sets of A+ and B+, only one instance (namely
AK501432) solved to optimality for the 1st Lagrangian relaxation problem in
the given 180 seconds time limit. Moreover, ad-hoc testing of subgradient op-
timization for Lagrangian duals on a few small A+ an B+ instances did not
seem to converge efficiently to a bound within CPU times of 2 to 7 hours.

For the approximation to Lagrangian duals, we first consider a strength-
ened LP formulation, i.e., the echelon formulation with all violated (ℓ, S) in-
equalities generated at the root node, and then fix the Lagrangian multipliers
to the values of the optimal dual variables of the constraints to be relaxed
in this formulation. We thus evaluate LR1(λ

∗) and LR2(µ
∗), respectively,

for the optimal dual variables λ∗ of the capacity constraints and the opti-
mal dual variables µ∗ of the level-linking constraints, respectively, in order
to approximate LD1 and LD2, respectively. These subproblems themselves
are MIPs that, in general, are difficult to solve to optimality, as can be seen
in computational results. Nevertheless, any lower bound on the optimal so-
lution of the Lagrangian subproblem MIP is also a lower bound on the La-
grangian dual (and hence the original problem), i.e., LR1(λ

∗) ≤ LD1 ≤ Z
and LR2(µ

∗) ≤ LD2 ≤ Z. Moreover, in every instance, for both LR1(λ
∗)

and LR2(µ
∗), the lower bound obtained computationally for the Lagrangian

subproblem MIP is at least as strong as the lower bound provided by the orig-
inal echelon formulation strengthened with (ℓ, S) inequalities. We note that
this is the only theoretical strength we are aware of for using these multipli-
ers. Finally, although this is a limited computational experience and cannot
necessarily generalize to other instances, our ad-hoc testing of subgradient op-
timization indicated that the bounds obtained using λ∗ and µ∗ can be very
competitive.

Similarly, as we discussed before, generating cover cuts on top of the facility
location reformulation provides only an approximation of ZKN

FL . Hence, the
computational comparisons we provide for these relationships are all based on
approximations. However, this still gives us the chance to compare empirical
results in addition to theoretically proven relationships.

4.2 Results

The detailed results for TDS instances can be found in the “Online Supple-
ment”. Note that we obtain the root node solution of the Branch&Bound tree
for (ℓ, S) inequalities, all generated through Algorithm 1, and for the multi-
commodity reformulation (MC), without the effect of any solver cuts. For the
facility location reformulation (FL), all the cover cuts generated by the solver
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are added at the root node and this strengthened formulation is used as FL
lower bound. For comparison purposes, we also use the lower bound obtained
by the heuristic in our companion paper (Akartunalı and Miller [1]), where the
lower bound is based on the first iteration of a relax-and-fix framework, i.e., a
partial LP relaxation of the original problem. For the Lagrangian relaxations
that relax the capacity and level-linking constraints, we use the dual optimal
values of the constraints from the strong LP relaxation as multipliers, and we
set default times of 180 seconds for A+ and B+ instances, and 500 seconds for
C and D instances. Note that if a Lagrangian relaxation subproblem (LR1(λ

∗)
or LR2(µ

∗), referred as LR1 and LR2 in the discussion, resp.) is not solved
to optimality in this preassigned time, the lower and upper bounds (denoted
by the functions LB(.) and UB(.), resp.) of this Lagrangian subproblem pro-
vide us the range where the actual lower bound of this Lagrangian relaxation
lies, since LB(LR1(λ

∗)) ≤ LR1(λ
∗) ≤ UB(LR1(λ

∗)) and LB(LR2(µ
∗)) ≤

LR2(µ
∗) ≤ UB(LR2(µ

∗)) obviously hold, while LR1(λ
∗) ≤ LD1 ≤ Z and

LR2(µ
∗) ≤ LD2 ≤ Z. Therefore, we use the lower and upper bounds of La-

grangian subproblems in our discussions. One important remark here is that
these upper bounds UB(LR1(λ

∗)) and UB(LR2(µ
∗)) do not provide any in-

formation on the original problem Z. Finally, note that due to Theorem 1 we
omit the shortest path reformulation in our tests.

We review the results in pairwise comparisons, which are summarized in
Table 2 (for detailed results, refer to Tables 1-4 of “Online Supplement”).
One interesting computational comparison is the relationship we have proven
in Theorem 2. As we can see from the detailed results, MC improves the
(ℓ, S) bound slightly, in general less than %1. The average improvements from
the (ℓ, S) inequalities bound to the MC bound, calculated as (MC bound -
ℓ, S bound)/(ℓ, S bound) for each test instance, are provided in the column
“MC vs. ℓ, S”, and these values are around 0.20%. Considering the enormous
size of the MC reformulation, these improvements are simply not worth the
computational effort. The Lagrangian relaxation LR1 that relaxes the capacity
constraints (i.e., LR1(λ

∗)) provides in general another slight improvement over
the lower bounds of the MC reformulation, as can be seen in the second column
of the same table (Column LB under “LR1 vs. MC”), which is calculated in a
similar fashion, i.e., (LB(LR1(λ

∗)) - MC bound)/(MC bound). Note that we
also provide averages calculated in the same way using the LR1’s upper bounds
(Column UB under “LR1 vs. MC”), i.e. (UB(LR1(λ

∗)) - MC bound)/(MC
bound). An interesting observation regarding the problems in set D, where all
LR1(λ

∗) problems are solved to optimality, is that although LR1(λ
∗) provided

improvements over the MC bounds for instances outwith set D, the same effect
was not observed in set D instances. This is due to the fact that LR1(λ

∗) is
only an approximation of LD1, and therefore it does not necessarily provide
a theoretically stronger bound than MC bound. However, as these results
indicate, LR1(λ

∗) and MC bounds are in general very close to each other in
our computational results.

On the other hand, as the “FL vs. ℓ, S” column of Table 2 indicates, the
facility location reformulation with cover cuts added (FL) improves in gen-
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Table 2 Pairwise comparisons of lower bounds and LR gaps for TDS instances

Test MC vs. LR1 vs. MC FL vs. LR2 vs. FL LR Gaps
Set ℓ, S LB UB ℓ, S LB UB LR1 LR2

A+ 0.29% 0.80% 2.99% 1.81% -0.05% 7.44% 2.09% 6.87%
B+ 0.28% 0.59% 3.06% 1.37% -0.35% 6.23% 2.38% 6.18%
C 0.14% 0.20% 1.67% 0.86% -0.32% 6.25% 1.44% 6.14%
D 0.21% -0.06% -0.06% 0.45% -0.43% 19.88% 0% 15.85%

eral the (ℓ, S) bound more significantly compared to previous methods. These
average percentages are calculated by (FL bound - ℓ, S bound)/(ℓ, S bound).
Similar to our previous comparisons, we also provide the average improve-
ments of the Lagrangian relaxation LR2 that relaxes level-linking constraints
(i.e., LR2(µ

∗)) over the FL bound in the column “LR2 vs. FL”, calculated by
(LB(LR2(µ

∗)) - FL bound)/(FL bound). Although one would expect the LR2,
the approximation of LD2, to improve the FL lower bounds, at first sight this
does not seem to be the case for many problem instances, particularly due to
negative averages in the LB column of Table 2. However, as can be seen from
the UB column of the table, which indicates (UB(LR2(µ

∗)) - FL bound)/(FL
bound), these Lagrangian problems are far from optimality, particularly the
bigger instances of test sets C and D, and the challenge here is that these
problems need much more time than the assigned default times (or any rea-
sonable amount of time) for optimality or even for an acceptable gap. For
testing whether this is the case here, we experimented with a few randomly
selected instances from sets A+ and B+ that did not achieve the FL bounds
earlier and ran them either until the lower bound was at least as strong as
the FL bound or to optimality. For the instances we took for this ad-hoc test,
we ended up with bounds that reached at least FL bounds, though we would
not be able to generalize this as this was simply for a small subset of the
test problems, due to high computational effort. Furthermore, this experiment
failed due to memory problems for the few instances from sets C and D and
hence could not be completed.

Finally, the last two columns of Table 2 should also be addressed briefly.
These columns indicate the duality gaps for the two Lagrangian relaxation
problems, which can be defined as:

[UB(LR1(λ
∗))− LB(LR1(λ

∗))]/LB(LR1(λ
∗))

[UB(LR2(µ
∗))− LB(LR2(µ

∗))]/LB(LR2(µ
∗))

Note that these gaps are not related to the original problem and only in-
dicate the problem complexity of these Lagrangian subproblems. As we men-
tioned before, the LR1 problem is in general comparatively easier to solve than
the LR2 problem. We had a total of 11 instances where the LR1 could solve
optimally in the assigned default times, compared to none for the LR2.
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Next, we present results for LOTSIZELIB instances in Table 3, where all
values are shown explicitly, including the optimal solutions (OPT) in the last
column. The table also has a “Heur” column for comparison purposes, which is
the lower bound obtained by the heuristic in our companion paper (Akartunalı
and Miller [1]), calculated from the first iteration of a relax-and-fix framework.
MC provides significant improvement over the (ℓ, S) bound for some of these
instances, whereas FL provides negligible improvement over MC. The LR1 is
comparatively more efficient on these instances than the LR2. Note that LR1
and LR2 do not necessarily improve MC and FL bounds respectively, similarly
to the results for some TDS instances, since these are approximations for LD1

and LD2. Also, note that all LR2 problems solved optimally for most of the
instances, whereas LR1 problems did not finish in quite a few instances after
the default time of 180 seconds. This indicates that these instances have the
bottleneck not in capacity constraints but in the multi-level structure. This
seems to be due in part to the fact that there is a single machine, and the
capacity in these problems is comparatively loose.

Table 3 LOTSIZELIB results

Lower Bounds LR1 (Cap) LR2 (Lev)
ℓ, S MC FL Heur [1] LB UB LB UB OPT

B 3,888 3,890 3,892 3,915 3,888 3,888 3,888 3,888 3,965
C 1,904 1,993 1,998 2,067 1,904 1,904 1,904 1,905 2,083
D 4,534 4,794 4,795 4,714 4,766 6,095 4,534 4,535 6,482
E 2,341 2,361 2,361 2,416 2,462 3,136 2,341 2,341 2,801
F 2,075 2,098 2,111 2,099 2,237 2,459 2,079 2,079 2,429

The detailed results on Multi-LSB instances can be seen in the Tables 5-
10 of “Online Supplement”, and the pairwise comparisons are summarized in
Table 4, which is organized in the same fashion as Table 2. The default times
for the first two sets are 180 seconds, and for the last two sets 500 seconds. First
of all, note that MC improves the (ℓ, S) bound poorly in most of the instances.
Also note that the LR1 is solved to optimality for all these test problems, and
as the table indicates, this approximation of LD1 does not often provide an
improvement over MC. This might be due in part to poor multipliers generated
from the (ℓ, S) formulation (also recall that these instances have backlogging
variables).

On the other hand, FL improves in general the (ℓ, S) bound more signif-
icantly than MC, although the improvements are still minuscule. Note that
LR2 does not solve to optimality for many test instances, particularly for
the hard problems. Similar to the LR1, the LR2 does not provide necessarily
an improvement over FL bound, possibly due to poor multipliers. Compared
to previous test problems, Multi-LSB instances are parallel to TDS problems,
where the bottleneck lies in the capacities rather than the multi-level structure
of these problems.
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Table 4 Pairwise comparisons of lower bounds and LR gaps for Multi-LSB instances

Test MC vs. LR1 vs. MC FL vs. LR2 vs. FL LR Gaps
Set ℓ, S LB UB ℓ, S LB UB LR1 LR2

SET1 0.02% -0.02% -0.02% 0.85% -0.29% -0.28% 0.00% 0.01%
SET2 0.06% -0.06% -0.06% 0.28% -0.11% -0.05% 0.00% 0.06%
SET3 6.28% -4.27% -4.27% 6.11% -5.14% 24.83% 0.00% 21.92%
SET4 1.23% -1.14% -1.14% 3.40% -0.99% 4.34% 0.00% 4.76%

4.3 Summary

One of our main goals of this paper was to understand the structure of pro-
duction planning problems and the underlying difficulties that make these
problems very hard. In general, the Lagrangian relaxations we tested are help-
ful for this. First of all, recall that in general the Lagrangian relaxation that
relaxes capacity constraints, i.e., LR1(λ∗), provides only slight improvement
over the (ℓ, S) bound. Also recall that LR1(λ∗) values provide a lower bound
to LD1. The LR1(λ∗) bound can be seen as an approximation to the convex
hull of the uncapacitated problem polyhedron, and our computational results
indicate that removing capacities makes the problem much easier. This can
also be observed by recalling that the final gaps after the default times were
quite small for this Lagrangian relaxation in general.

On the other hand, the facility location reformulation with cover cuts and
the Lagrangian relaxation that relaxes the level-linking constraints (although
only an approximation to the Lagrangian dual) seem to improve the lower
bounds much more significantly. Recall that the cover cuts approximate the
intersection of all knapsack sets included in the problem, and LR2(µ∗) provides
an approximation to the convex hull of the single-level capacitated polyhedrons
within the overall multi-level problem. Having higher duality gaps compared
to the LR1, this Lagrangian relaxation problem is in general much harder
to solve, indicating that the level-linking constraints are not the bottleneck of
these problems. A similar comparison is achieved by Jans and Degraeve [21] for
single-level problems, where their Lagrangian relaxation relaxing only period-
linking constraints is a harder problem than the one that relaxes capacities.
Recall that we did not report computational results on LD3, due to the result
presented in Corollary 7.

5 Conclusion

In this paper, we have provided an extensive survey of different methodologies
for obtaining lower bounds for big bucket production planning problems, and
presented both theoretical and computational comparisons of them.

In summary, it seems that the multi-level structure by itself makes some
of our problems challenging to solve. However, for most instances, and in par-
ticular for the most challenging, the single-level, capacitated substructures are
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clearly a much greater contributor to problem difficulty. It is this substructure
for which the tools currently at our disposal are evidently not sufficient.

These observations indicate that the main bottleneck with these problems
lies in the fact that there is no efficient polyhedral approximation of the multi-
item, multi-period, single-level, single-machine capacitated problems. It seems
that if we could solve these problems well or even adequately, our ability
to solve multi-level bug bucket problems would increase dramatically. While
initial efforts to find strong formulations for these problems have been made
(e.g. see Miller et al. [32]), this is a fundamental area in which it is crucial
for the research community to improve the current state of the art. We will
attempt to make contributions in this direction in future research.
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6 APPENDIX: Detailed Results (Online Supplement)

This section is prepared to present all detailed computational results that are
too overwhelming for and therefore only summarized in the paper titled “A
Computational Analysis of Lower Bounds for Big Bucket Production Planning
Problems”. It is aimed that this level of detail can help other researchers to
get better insight, as well as have benchmark values when needed.

All the tables are structured the same way, as following: The first column
indicates the specific name of the instance. The next four columns present
the lower bound values obtained, in the order of (ℓ, S) inequalities (root node
solution of the Branch&Bound tree), multi-commodity (MC) reformulation
(without the effect of any solver cuts), facility location (FL) reformulation
(with all cover cuts generated by the solver), and lower bound obtained by our
heuristic (see reference [1] in the paper). Then, the next two columns provide
the lower and upper bounds of the 1st Lagrangian problem (relaxing capacity),
followed by the two columns presenting the lower and upper bounds of the
2nd Lagrangian problem (relaxing level). Finally, the last column indicates
the best solution we are aware of. Note that for the Lagrangian relaxations,
we use the dual optimal values of the constraints from the strong LP relaxation
as multipliers, and we set default times of 180 seconds for A+, B+, SET1 and
SET2 instances, and 500 seconds for C, D, SET3, SET4 instances. Note that
if the Lagrangian relaxation subproblem is not solved to optimality in this
preassigned time, the lower and upper bounds of this Lagrangian subproblem
provide us the range where the actual lower bound of the Lagrangian relaxation
lies.
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Table 5 TDS Instances Detailed Computational Results, set A+

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

AG501130 116,183 116,600 118,340 119,146 117,808 123,203 120,764 127,683 153,418
AG501131 107,829 108,106 108,987 109,714 109,298 115,656 108,822 117,533 145,225
AG501132 118,677 118,957 119,986 121,740 120,163 123,663 120,454 128,249 154,191
AG501141 133,424 134,008 135,519 134,421 135,078 141,548 136,547 147,696 171,895
AG501142 145,508 145,873 147,646 148,911 146,527 151,197 149,002 156,488 192,582
AG502130 122,353 123,904 125,925 128,101 125,087 125,472 127,119 134,118 167,927
AG502131 109,085 109,501 110,500 111,001 111,043 116,443 109,959 121,005 145,322
AG502141 134,971 135,527 136,973 136,353 136,792 141,900 139,060 146,767 173,640
AG502232 97,032 97,488 97,890 97,632 98,529 101,859 98,206 102,415 121,108
AG502531 102,340 103,252 102,817 103,506 103,216 105,542 103,211 109,727 129,080
AK501131 96,968 96,983 99,966 99,020 97,892 98,030 97,811 112,060 123,366
AK501132 101,699 101,781 103,276 103,077 102,289 102,887 102,847 109,206 123,473
AK501141 134,805 134,943 139,399 136,428 135,487 136,315 137,303 163,011 170,897
AK501142 134,880 135,006 138,151 135,875 135,122 137,204 137,867 151,661 161,262
AK501432 92,533 92,605 92,968 93,546 94,679 94,679 93,270 93,645 109,249
AK502130 102,222 102,245 106,358 103,949 103,054 103,460 104,351 117,191 127,889
AK502131 93,369 93,423 95,912 94,969 93,778 94,145 94,338 101,804 115,819
AK502132 96,312 96,396 98,423 97,233 96,933 97,092 97,644 104,528 118,319
AK502142 127,792 127,977 129,654 129,034 128,226 130,758 129,863 138,752 146,616
AK502432 88,980 89,088 89,550 89,609 90,193 91,779 89,995 91,225 105,415

Table 6 TDS Instances Detailed Computational Results, set B+

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

BG511132 108,772 109,045 109,875 110,466 110,136 114,629 109,545 116,781 137,637
BG511142 133,158 133,652 134,424 133,880 134,500 137,991 134,648 146,913 159,769
BG512131 104,054 104,483 105,158 105,804 105,469 110,855 104,580 112,766 138,752
BG512132 114,786 115,314 115,894 116,135 115,931 119,395 115,156 125,132 151,770
BG512142 142,917 143,659 144,840 143,848 144,161 148,340 145,305 158,261 199,051
BG521132 108,324 108,559 109,338 110,024 109,805 113,609 109,109 115,077 138,133
BG521142 131,363 131,908 132,996 132,604 132,905 137,629 133,224 141,350 156,694
BG522130 113,540 114,876 116,472 121,578 115,240 119,850 115,961 123,968 154,581
BG522132 113,382 113,838 114,305 115,158 114,551 119,158 114,262 121,255 147,894
BG522142 137,126 137,782 138,608 138,077 138,405 142,417 138,851 144,180 186,268
BK511131 92,602 92,640 93,964 94,411 93,107 94,310 93,304 99,779 120,303
BK511132 95,323 95,355 97,283 95,938 95,942 96,844 96,310 103,668 115,416
BK511141 125,307 125,494 126,753 126,769 125,679 127,256 126,534 135,597 162,629
BK512131 90,733 90,787 92,253 92,058 91,391 92,036 91,568 96,009 113,536
BK512132 90,814 90,858 92,896 91,346 91,738 92,208 91,870 98,554 112,809
BK521131 92,350 92,382 93,469 94,164 92,881 94,004 92,884 97,318 118,217
BK521132 94,257 94,317 96,197 94,957 94,932 95,914 95,110 101,441 117,423
BK521142 124,988 125,257 126,384 125,480 125,333 128,448 126,548 134,871 153,805
BK522131 90,532 90,588 91,731 91,742 91,131 91,802 91,291 96,184 111,339
BK522142 119,559 119,739 120,794 119,625 120,047 124,160 120,956 127,283 148,471
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Table 7 TDS Instances Detailed Computational Results, set C

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

CG501120 1,011,260 1,012,042 1,025,118 1,027,177 1,012,992 1,022,396 1,017,258 1,109,345 1,252,308
CG501131 472,421 472,711 475,464 478,437 473,125 476,392 472,947 513,188 614,303
CG501141 627,035 627,631 630,113 628,114 628,641 631,308 627,980 678,899 777,831
CG501121 945,696 946,442 953,112 959,756 948,052 953,730 946,612 1,045,688 1,247,493
CG502221 724,648 725,517 725,827 728,105 726,515 743,421 724,779 765,713 889,548
CG501132 561,827 562,158 566,137 606,568 562,887 567,636 567,379 597,061 842,734
CG501222 697,129 698,410 699,934 699,021 699,024 718,231 697,860 723,508 858,289
CG501142 754,238 757,449 761,826 824,887 757,128 758,835 764,794 802,021 1,146,638
CG501122 1,161,383 1,162,216 1,171,502 1,281,687 1,165,839 1,178,726 1,174,289 1,243,710 1,787,833
CG502222 704,096 705,161 707,153 708,597 706,766 725,192 704,971 753,284 873,858
CK501120 141,900 142,034 143,869 143,260 142,581 145,659 143,212 156,264 176,187
CK501221 101,028 101,108 101,570 101,105 101,299 103,024 101,114 106,030 123,066
CK501121 131,993 132,185 133,494 132,840 132,708 137,522 132,496 147,865 169,804
CK502221 101,478 101,740 102,242 101,899 101,968 103,730 101,623 107,423 122,596
CK501222 97,937 98,050 98,858 98,096 98,313 100,271 98,267 102,163 122,485
CK501422 101,864 102,007 102,660 102,150 102,135 102,981 103,846 107,102 124,315
CK502222 98,052 98,236 98,898 98,282 98,450 100,835 98,333 104,359 119,965
CK501122 153,861 154,358 156,048 155,485 154,841 155,914 155,016 165,574 206,646
CK501132 75,257 75,301 76,198 75,782 75,648 76,311 75,780 80,388 98,248
CK501142 90,218 90,347 91,277 90,673 90,477 91,215 90,701 96,230 115,918

Table 8 TDS Instances Detailed Computational Results, set D

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

DG512141 609,464 610,630 611,291 615,992 610,613 610,613 609,599 659,071 736,181
DG512131 465,272 466,156 466,203 469,460 466,333 466,333 465,372 495,481 581,932
DG012132 554,595 556,651 559,610 555,689 556,441 556,441 554,922 781,344 3,160,347
DG012142 756,588 758,120 763,304 756,588 757,387 757,387 756,898 1,001,177 3,121,762
DG012532 554,167 555,261 556,877 555,032 555,045 555,045 554,167 775,666 1,194,004
DG012542 756,062 756,956 759,793 756,062 756,563 756,563 756,159 982,363 1,413,476
DG512132 512,330 513,440 514,386 514,682 512,722 512,722 512,376 554,333 2,909,628
DG512142 678,733 679,821 681,450 682,205 679,062 679,062 678,777 854,902 3,583,354
DG512532 509,567 511,041 510,510 512,147 510,670 510,670 509,587 542,328 584,491
DG512542 674,241 675,180 675,969 677,189 674,734 674,734 674,241 715,533 767,428
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Table 9 Multi-LSB Detailed Computational Results, SET1 instances 1-20

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

SET1 01 17,888 17,888 18,173 18,840 17,888 17,888 17,888 17,972 22,781
SET1 02 23,534 23,534 23,656 24,134 23,534 23,534 23,534 23,534 28,624
SET1 03 21,227 21,227 21,346 21,676 21,227 21,227 21,227 21,227 26,349
SET1 04 22,232 22,232 22,334 23,175 22,232 22,232 22,232 22,232 26,337
SET1 05 21,446 21,446 21,540 21,994 21,446 21,446 21,446 21,446 25,621
SET1 06 22,974 22,974 23,072 23,636 22,974 22,974 22,974 22,974 26,741
SET1 07 20,360 20,360 20,386 21,125 20,360 20,360 20,360 20,360 24,693
SET1 08 25,582 25,582 25,616 26,249 25,582 25,582 25,582 25,582 29,810
SET1 09 16,321 16,321 16,442 17,013 16,321 16,321 16,321 16,338 21,146
SET1 10 17,998 17,998 18,151 18,945 17,998 17,998 17,998 18,011 22,863
SET1 11 11,080 11,080 11,237 11,407 11,080 11,080 11,164 11,169 12,956
SET1 12 24,721 24,721 24,762 25,238 24,721 24,721 24,721 24,725 26,985
SET1 13 20,782 20,788 20,830 21,195 20,782 20,782 20,782 20,786 23,129
SET1 14 22,264 22,268 22,331 22,745 22,264 22,264 22,264 22,264 25,720
SET1 15 12,401 12,404 12,805 12,575 12,401 12,401 12,564 12,564 14,121
SET1 16 15,122 15,122 15,356 15,387 15,122 15,122 15,543 15,543 17,542
SET1 17 20,468 20,475 20,498 20,864 20,468 20,468 20,468 20,468 23,404
SET1 18 11,075 11,077 11,366 11,456 11,075 11,075 11,462 11,462 12,300
SET1 19 13,276 13,276 13,528 13,342 13,276 13,276 13,388 13,388 17,448
SET1 20 14,101 14,101 14,177 14,612 14,101 14,101 14,101 14,113 17,167

Table 10 Multi-LSB Detailed Computational Results, SET1 instances 21-30 and SET2
instances 1-10

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

SET1 21 10,159 10,166 10,429 10,392 10,159 10,159 10,325 10,325 12,421
SET1 22 38,040 38,056 38,166 38,040 38,040 38,040 38,040 38,077 40,158
SET1 23 29,331 29,343 29,376 29,355 29,331 29,331 29,331 29,331 30,606
SET1 24 28,858 28,858 29,074 29,250 28,858 28,858 28,886 28,886 32,174
SET1 25 51,371 51,371 51,403 51,371 51,371 51,371 51,371 51,371 53,009
SET1 26 39,379 39,379 39,463 39,488 39,379 39,379 39,402 39,402 41,442
SET1 27 40,838 40,838 40,838 40,918 40,838 40,838 40,838 40,838 43,320
SET1 28 39,846 39,864 39,894 40,144 39,846 39,846 39,857 39,857 40,993
SET1 29 23,155 23,165 23,275 23,232 23,155 23,155 23,182 23,182 25,606
SET1 30 68,989 68,989 69,074 68,989 68,989 68,989 68,989 68,989 70,868
SET2 01 46,116 46,116 46,207 46,591 46,116 46,116 46,116 46,116 55,039
SET2 02 47,780 47,780 47,861 48,159 47,780 47,780 47,780 47,780 57,825
SET2 03 40,551 40,551 40,610 40,814 40,551 40,551 40,551 40,551 49,147
SET2 04 36,347 36,347 36,564 36,808 36,347 36,347 36,347 36,430 44,656
SET2 05 45,395 45,395 45,508 45,784 45,395 45,395 45,395 45,395 55,650
SET2 06 45,902 45,902 45,939 45,902 45,902 45,902 45,902 45,902 54,361
SET2 07 52,825 52,825 52,939 53,108 52,825 52,825 52,825 52,825 61,140
SET2 08 48,033 48,033 48,280 48,632 48,033 48,033 48,084 48,084 56,444
SET2 09 37,553 37,553 37,661 37,943 37,553 37,553 37,553 37,553 44,523
SET2 10 38,751 38,751 38,898 39,181 38,751 38,751 38,751 38,751 49,481
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Table 11 Multi-LSB Detailed Computational Results, SET2 instances 11-30

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

SET2 11 65,210 65,211 65,213 65,648 65,210 65,210 65,210 65,210 69,177
SET2 12 62,792 62,792 62,979 62,792 62,792 62,792 62,803 62,803 66,914
SET2 13 34,778 34,778 34,882 34,987 34,778 34,778 34,885 34,885 40,114
SET2 14 62,907 62,907 62,993 62,907 62,907 62,907 62,907 62,916 67,201
SET2 15 59,079 59,079 59,125 59,079 59,079 59,079 59,079 59,079 61,616
SET2 16 75,682 75,682 75,698 75,682 75,682 75,682 75,682 75,682 79,576
SET2 17 36,809 36,818 36,918 36,925 36,809 36,809 36,826 36,935 41,484
SET2 18 77,873 77,874 77,935 78,087 77,873 77,873 77,873 77,873 83,200
SET2 19 54,981 54,981 55,120 55,484 54,981 54,981 55,026 55,026 59,010
SET2 20 119,568 119,568 119,588 119,568 119,568 119,568 119,568 119,568 122,974
SET2 21 22,281 22,315 22,557 22,281 22,281 22,281 22,643 22,643 24,459
SET2 22 51,279 51,279 51,439 51,279 51,279 51,279 51,414 51,414 53,690
SET2 23 29,793 30,067 30,210 29,793 29,793 29,793 29,814 29,815 33,969
SET2 24 65,891 65,891 65,984 65,891 65,891 65,891 65,891 65,891 68,727
SET2 25 75,627 75,628 75,745 75,627 75,627 75,627 75,705 75,705 78,266
SET2 26 60,952 61,002 61,173 60,977 60,952 60,952 60,988 60,988 63,558
SET2 27 53,016 53,016 53,052 53,016 53,016 53,016 53,016 53,441 54,797
SET2 28 44,545 44,552 44,705 44,549 44,545 44,545 44,923 44,923 46,733
SET2 29 93,631 93,638 93,659 93,631 93,631 93,631 93,632 93,632 96,281
SET2 30 68,324 68,333 68,573 68,573 68,324 68,324 68,324 68,324 71,919

Table 12 Multi-LSB Detailed Computational Results, SET3 instances 1-20

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

SET3 01 65,668 71,594 71,584 71,533 66,984 66,984 65,761 112,652 209,129
SET3 02 82,342 89,855 89,887 89,980 84,865 84,865 82,704 105,740 243,511
SET3 03 74,209 82,398 82,440 81,340 77,086 77,086 74,611 99,483 235,198
SET3 04 78,282 85,258 85,229 86,280 80,716 80,716 78,436 108,664 240,339
SET3 05 76,607 83,692 83,667 84,430 78,931 78,931 76,884 102,852 227,758
SET3 06 79,093 88,689 88,737 85,674 82,910 82,910 79,625 112,534 235,642
SET3 07 72,979 79,067 79,181 79,668 75,365 75,365 73,098 105,466 237,218
SET3 08 88,610 94,504 94,481 98,469 92,108 92,108 89,213 129,505 251,628
SET3 09 64,180 67,768 67,760 73,019 64,336 64,336 64,180 85,114 216,025
SET3 10 66,878 74,333 74,324 73,902 67,928 67,928 66,912 92,540 229,242
SET3 11 42,946 46,063 45,997 47,273 43,902 43,902 43,012 69,501 152,962
SET3 12 86,047 95,953 95,980 97,672 90,412 90,412 87,641 112,402 217,497
SET3 13 74,643 81,477 81,348 83,699 75,379 75,379 74,987 102,771 224,670
SET3 14 85,209 91,252 91,435 94,426 86,813 86,813 85,493 102,438 225,657
SET3 15 40,715 43,551 43,343 45,265 40,843 40,843 40,750 74,085 167,494
SET3 16 46,548 50,868 50,784 51,811 48,528 48,528 48,360 62,509 162,616
SET3 17 71,555 78,132 77,988 82,199 72,458 72,458 71,837 95,764 212,399
SET3 18 39,533 40,406 40,259 46,743 39,658 39,658 39,616 57,199 112,468
SET3 19 47,495 50,636 50,497 53,815 48,266 48,266 47,636 84,711 154,981
SET3 20 58,189 60,240 60,125 62,614 58,529 58,529 59,753 95,852 191,639



Computational Analysis of Big Bucket Production Planning Problems 31

Table 13 Multi-LSB Detailed Computational Results, SET3 instances 21-30 and SET4
instances 1-10

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

SET3 21 44,182 45,435 45,383 53,138 44,359 44,359 44,182 60,262 150,758
SET3 22 130,235 138,607 138,279 136,582 133,995 133,995 130,930 142,716 292,199
SET3 23 96,810 102,993 102,912 107,981 99,719 99,719 96,939 115,205 240,643
SET3 24 105,300 110,117 109,994 115,086 105,327 105,327 105,300 136,353 292,996
SET3 25 203,044 210,031 209,928 210,037 204,955 204,955 203,044 212,110 349,975
SET3 26 145,184 152,864 152,545 160,639 146,938 146,938 145,198 155,347 323,870
SET3 27 145,420 154,121 153,805 154,499 148,698 148,698 145,674 169,988 343,486
SET3 28 145,227 153,083 153,327 152,942 147,940 147,940 145,927 162,729 254,008
SET3 29 79,813 87,043 86,551 84,552 81,494 81,494 80,206 96,912 207,127
SET3 30 274,018 283,252 282,958 275,167 276,810 276,810 274,018 284,338 431,136
SET4 01 16,353 16,532 18,093 21,961 16,353 16,353 16,951 23,694 58,720
SET4 02 31,541 32,773 34,074 41,393 31,541 31,541 31,726 33,919 82,496
SET4 03 24,864 25,616 27,464 33,058 24,864 24,864 24,864 28,061 73,740
SET4 04 27,786 28,837 30,023 36,512 27,786 27,786 27,928 31,426 73,651
SET4 05 25,450 26,353 27,335 35,022 25,450 25,450 25,450 29,755 67,874
SET4 06 30,632 31,495 32,990 40,513 30,632 30,632 31,054 35,402 79,781
SET4 07 22,650 23,189 24,599 31,952 22,650 22,650 23,884 30,365 65,736
SET4 08 40,532 42,512 43,131 48,381 40,532 40,532 40,538 41,812 88,388
SET4 09 13,490 13,557 14,687 21,182 13,490 13,490 14,650 19,585 57,070
SET4 10 15,542 15,553 16,857 25,595 15,542 15,542 16,041 26,902 59,319

Table 14 Multi-LSB Detailed Computational Results, SET4 instances 11-30

Lower Bounds LR1 (Cap) LR2 (Lev) Best
ℓ, S MC FL Heuristic LB UB LB UB Soln

SET4 11 12,802 12,996 13,825 17,303 12,802 12,802 13,675 15,205 28,989
SET4 12 43,341 44,527 45,100 50,868 43,341 43,341 44,523 46,502 78,062
SET4 13 28,152 28,736 30,049 34,945 28,152 28,152 28,152 33,352 53,833
SET4 14 56,174 57,052 57,302 64,255 56,174 56,174 56,406 57,049 82,406
SET4 15 14,628 14,715 15,304 15,863 14,628 14,628 15,244 16,260 26,980
SET4 16 17,171 17,529 17,990 22,405 17,172 17,172 17,662 19,874 35,280
SET4 17 29,001 29,886 30,581 36,480 29,225 29,225 29,237 31,729 54,515
SET4 18 19,184 19,213 19,309 22,584 19,185 19,185 19,705 19,997 26,279
SET4 19 10,724 10,769 11,780 14,950 10,724 10,724 12,581 15,411 31,974
SET4 20 18,718 18,858 19,702 23,969 18,731 18,731 19,420 21,014 39,983
SET4 21 15,812 16,243 16,819 18,259 15,812 15,812 16,386 17,720 25,899
SET4 22 91,715 93,010 93,185 93,869 91,733 91,733 92,228 92,310 120,166
SET4 23 55,058 55,601 56,077 57,298 55,151 55,151 55,562 56,132 76,857
SET4 24 58,919 59,231 59,512 63,700 58,919 58,919 59,213 60,947 85,119
SET4 25 171,987 172,779 172,904 173,663 171,987 171,987 171,987 171,988 201,717
SET4 26 110,570 111,393 111,703 117,746 110,570 110,570 110,570 110,577 142,090
SET4 27 101,114 102,197 102,182 103,873 101,471 101,471 101,267 101,340 139,874
SET4 28 112,892 113,353 114,022 113,987 112,892 112,892 112,987 112,987 126,027
SET4 29 51,149 51,394 51,776 56,304 51,149 51,149 51,253 51,253 68,320
SET4 30 241,678 243,702 243,998 242,481 241,801 241,801 241,678 241,693 267,976


