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Abstract

Motivated by the industrially important processes of blade coating and cavity filling of liquid

crystalline materials, we consider steady, two-dimensional shear-driven (Couette) and pressure-

driven (plane Poiseuille) flow of a thin film of a nematic liquid crystal in the slowly varying

channel formed between a fixed blade of prescribed shape and a planar substrate. Specifically,

blade coating motivates the study of shear-driven flow due to the motion of the substrate parallel

to itself with constant velocity, while cavity filling motivates the study of pressure-driven flow

due to an imposed pressure drop. We use a combination of analytical and numerical techniques

to analyse the Ericksen–Leslie equations governing the fluid velocity and pressure and the

director orientation in cases when both the aspect ratio of the channel and the distortion of

the director field are small. We demonstrate a variety of flow and director-orientation patterns

occurring in different parameter regimes. In the limit of weak flow effects flow alignment does

not occur and the appropriate solution of the governing equations is found explicitly. In the

limit of strong flow effects flow alignment occurs and orientational boundary layers exist near

the substrate and near the blade, and, in addition, an orientational internal layer may also exist

within which the director orientation changes from +θ0 to −θ0, where θ0 is the flow-alignment

angle.

∗ Author to whom correspondence should be addressed. Electronic mail: s.k.wilson@strath.ac.uk
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I. INTRODUCTION

A thermotropic liquid crystal is an anisotropic liquid consisting of rod-like (calamitic)

or disc-like (discotic) molecules that exists as an intermediate state between a crystalline

solid and an isotropic liquid. The major commercial interest in liquid crystals is a

consequence of their optical properties which are exploited in display technologies. These

optical properties are directly related to the mean orientation of the molecules in the

liquid crystal which can be described by a macroscopic variable, a unit vector called the

director. In recent years liquid crystal coating and filling processes have been investigated

in order to facilitate more efficient mass production of liquid crystal displays.1 A crucial

element of a commercially successful mass production process is the reliable manufacture

of homogeneous and defect-free layers of liquid crystal. Blade-coating processes typically

use a blade on one side of which there is a reservoir of liquid crystal, and under which

the substrate to be coated is pulled. The liquid crystal is then coated onto the substrate

in a thin film, as shown in Fig. 1. Cavity-filling processes typically impose a pressure

drop in order to drive the liquid crystal into a gap between fixed boundaries.

The aim of the present work is to advance the understanding of the behaviour of

a nematic liquid crystal during coating and filling processes. Although, at present, in

an industrial setting, these processes are usually undertaken while the material is in

the isotropic phase, we will investigate the alignment behaviour in the nematic phase.

This will give insight into how flow effects may influence alignment within the coated

layer or the filled channel. In particular, flow effects during coating or filling in the

nematic phase may lead to enhanced director alignment and hence a reduction in the

possibility of defects occurring in the final product, which would be of great interest to

device manufacturers. We tackle the problem using the Ericksen–Leslie equations2–5 for
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a nematic liquid crystal. These equations have consistently been successfully applied to

many liquid crystal switching and flow problems,5 and we can have confidence that they

will accurately model the present system.

Pikin6 studied a one-dimensional model of the influence of shear on the orientation of

a nematic liquid crystal and obtained some approximate solutions of the Ericksen–Leslie

equations. He proved the existence and stability of different types of director behaviour

depending on the material parameters. In particular, for strong shear he predicted

the existence and thickness of thin orientational boundary layers in which the director

orientation changes rapidly from its boundary-dictated value to the flow-alignment angle

θ0 (the alignment of the director to the streamlines induced by shear in the absence of

other effects3) in the bulk. MacSithigh and Currie7 also studied approximate solutions

for the director orientation for strong shear, and in a subsequent paper Currie and

MacSithigh8 studied the stability and dissipation of these solutions. Similar solutions

were also investigated by Skarp and Carlsson9 who considered the influence of an electric

field on the director orientation for strong shear both theoretically and experimentally.

Pressure-driven flow was considered by Atkin,10 who studied the existence and uniqueness

of an exact solution of the Ericksen–Leslie equations for steady flow in an infinitely long

circular cylinder or between two coaxial cylinders. Later, Currie11 discussed the same

problem and found approximate solutions for the director. Rey and Denn12 obtained a

similarity solution of the Ericksen–Leslie equations for flow of prescribed flux between

converging and diverging planar boundaries (Jeffery–Hamel flow).

Many issues in nematic liquid crystal flows have been investigated by solving the

Ericksen–Leslie equations numerically. For instance, Derfel13 considered in-plane align-

ment of the director during simple shear flow, and subsequently Derfel and Radomska14

considered out-of-plane alignment; more recently, Tu et al.15 considered different ap-

3



proximations of the liquid crystal elastic constants to analyse the effect of the elastic

anisotropy on the director orientation. More complex geometries have been considered

in studies of pressure-driven flows; for instance, Rey16 studied radial flow between con-

centric parallel discs and showed the existence of orientational boundary layers, Chono

and Tsuji17 analysed flow around a circular cylinder, and Chang et al.18 developed a

new numerical method to study the flow of liquid crystals in complex geometries. Other

numerical studies considered transient flows in order to describe the behaviour of ne-

matic liquid crystals subject to director tumbling19,20 or to study the effect of the elastic

anisotropy on the flow and the director.21

Some analytical work on oscillatory flows has been carried out by Krekhov et al.22 and

more recently by de Andrade Lima and Rey23 who described a method to distinguish

between flow-aligning and non-flow-aligning nematic liquid crystals.

Although the Ericksen–Leslie theory has been successful in modelling many nematic

liquid crystal flows, other theories are also widely used. For instance, Ericksen24 devel-

oped a theory that includes the order parameter of the liquid crystal, and this theory

has been considered by Calderer and Liu25 in a study of pressure-driven flows. Other

theories commonly considered include the Doi theory, which was used by, for instance,

Feng and Leal26 to describe how the geometry of the channel influences the orientation

of the liquid crystal during pressure-driven flow, and a more general theory due to Tsuji

and Rey that incorporates both Ericksen–Leslie and Doi theories as special cases, which

was considered by, for instance, Rey and Tsuji.27 These theories are outside the scope of

this paper and the reader is referred to the review by Rey and Denn28 for more details.

In this paper we address steady, two-dimensional shear-driven (Couette) and pressure-

driven (plane Poiseuille) flow of a thin film of a nematic liquid crystal in the slowly vary-

ing channel formed between a fixed blade of prescribed shape and a planar substrate,
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as shown in Fig. 2. We adopt a new approach to the problems involving a combina-

tion of analytical and numerical techniques to analyse the Ericksen–Leslie equations2–5

governing the fluid velocity and pressure and the director orientation. In contrast to

the previous analytical results discussed above we are able to give analytical or semi-

analytical solutions for both shear-driven and pressure-driven flow without using, for

example, a “one-constant” approximation to the elastic constants, and without restrict-

ing the analysis to one spatial dimension. Some of the present results for shear-driven

flow (in particular, some of those in Sec. III C) were recently presented at an international

liquid crystal conference.29

We demonstrate a variety of flow and director-orientation patterns occurring depend-

ing on the system and material parameters. Using justifiable assumptions to identify

situations in which there is a decoupling between flow and director enables us to give

explicit closed-form solutions for the velocity and the director in three of the five cases

described. Of crucial importance is the Ericksen number, a non-dimensional parameter

measuring the relative strength of viscosity and orientational elasticity effects.

We find that in the limit of weak flow effects (i.e. small Ericksen number) flow align-

ment does not occur and, in such cases, the director orientation is influenced predom-

inantly by the boundary conditions. Critical values of the Ericksen number for which

there is a qualitative change in the director profile are given explicitly; this characteri-

sation of the director during the coating or cell-filling process is of importance since it

may indicate when defects are likely to occur in the final product.

In the limit of strong flow effects (i.e. large Ericksen number), flow alignment occurs

and orientational boundary layers exist near the substrate and near the blade, and,

in addition, an orientational internal layer may also exist within which the director

orientation changes from +θ0 to −θ0. Such a change in the orientation from +θ0 to −θ0
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would be undesirable since it could conceivably lead to defects in the final display. We

present a parameter plane showing when orientational internal layers occur.

As a final remark, we emphasise that the present analysis is valid for any blade

shape, and so our model can be used to describe a great number of coating or cell-filling

processes.

II. GOVERNING EQUATIONS

Consider steady, two-dimensional flow of a thin film of a nematic liquid crystal between

a fixed blade of prescribed shape and a planar substrate. The substrate is taken to lie

in the plane z = 0 whilst the blade is taken to lie at z = h(x), a prescribed function

of x, the coordinate in the direction of the imposed shear or pressure drop, as shown in

Fig. 2. The substrate is moved to the right at a constant speed U (> 0) (shear-driven

flow) or a pressure drop p0 − pL (> 0) is imposed across the liquid crystal underneath

the blade in the x direction between x = 0 and x = L (pressure-driven flow). We assume

that all dependent variables are functions of x and z only. The nematic director n is

assumed to lie within the plane of shear, which is a justifiable assumption for realistic

values of the shear, and the fluid velocity v is assumed to have components only in the

x and z directions, which is also a justifiable assumption if n remains in the x–z plane.

The director, fluid velocity and pressure may therefore be written as

n = (cos θ(x, z), 0, sin θ(x, z)) (1)

v = (u(x, z), 0, w(x, z)), (2)

p = p(x, z), (3)

where the director angle θ = θ(x, z) is the angle that the director makes with the positive

x axis.
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The Ericksen–Leslie dynamical equations2–5 consist of a mass-conservation equation

and balance laws of linear and angular momentum; in the present situation and with

inertia and external forces neglected the equations simplify to

vi,i = 0, (4)

0 = −p̃,i + g̃k
∂nk

∂θ
θ,i + t̃ik,k, (5)

(
∂W

∂θ,i

)

,i

− ∂W

∂θ
+ g̃i

∂ni

∂θ
= 0. (6)

The standard redefinition of pressure used when studying the Ericksen–Leslie equations

has been employed so that the modified pressure p̃ includes a term dependent on orien-

tational elasticity, i.e. p̃ = p + W , where W is the elastic energy. The constitutive laws

for g̃, t̃ and W are

g̃i = −γ1Ni − γ2Aijnj, (7)

t̃ij = α1(nknpAkp)ninj + α2Ninj + α3Njni + α4Aij + α5Aiknknj + α6Ajknkni, (8)

2W = K1(∇ · n)2 + K2(n · ∇ × n)2 + K3[(n · ∇)n]2, (9)

where

γ1 = α3 − α2, γ2 = α6 − α5, (10)

with αi (i = 1, ..., 6) the Leslie viscosities and Ki (i = 1, 2, 3) the elastic constants for

splay, twist and bend, and the Parodi relation α6 − α5 = α2 + α3 is assumed to hold.

The rate-of-strain tensor A, the co-rotational time derivative of the director N and the

vorticity tensor W are given respectively by

Aij = 1
2
(vi,j + vj,i), Ni = ṅi −Wijnj, Wij = 1

2
(vi,j − vj,i), (11)

where a superposed dot denotes the usual material time derivative ∂/∂t + v · ∇.
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We use the following non-dimensionalisation of the independent variables and param-

eters:

x = Lx∗, z = Hz∗, h = Hh∗, αi = µ0α
∗
i , Ki = K0K

∗
i , (12)

where µ0 is a combination of the Leslie viscosities αi, K0 is one of the elastic constants

Ki, H is a typical value of h, and L is the length of the blade in the x direction. In

the case of shear-driven flow the appropriate non-dimensionalisation of the fluid velocity

and pressure is

u = Uu∗, w =
HU

L
w∗, p̃− pL =

µ0UL

H2
p̃∗, (13)

whereas in the case of pressure-driven flow it is

u =
H2(p0 − pL)

µ0L
u∗, w =

H3(p0 − pL)

µ0L2
w∗, p̃− pL = (p0 − pL)p̃∗. (14)

The length and velocity in the x and z directions have been non-dimensionalised dif-

ferently to reflect the slenderness of the slowly varying channel formed between the

blade and the substrate, and the standard “lubrication” scaling of the pressure has been

employed.31,32

When presenting results, we will consider two specific blade shapes, namely h(x) =

1 − α(1 − x) with α < 0 and h(x) = 1 + αx with α > 0, corresponding to a linearly

converging and a linearly diverging channel, respectively. However, the present analysis

is valid for any blade shape.

In general, very little analytical progress can be made since the governing equations are

coupled partial differential equations that involve nonlinear functions of θ. For instance,

in the momentum equations the effective viscosity αeff is a nonlinear function of θ:

αeff =
1

2
(α4 + α3 + α6) cos2 θ +

1

2
(α4 + α5 − α2) sin2 θ + α1 cos2 θ sin2 θ. (15)

In order to make analytical progress, we will make some justifiable approximations, as

described in the next two sections.
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A. Thin-film approximation

The first approximation we make is a thin-film approximation31,32 based on the as-

sumption that the aspect ratio ε of the channel, defined by ε = H/L, is small, that is,

ε ¿ 1. In the limit ε → 0 the linear momentum and the angular momentum balances

in the Ericksen–Leslie equations (5) and (6) (with the superscript star dropped from the

non-dimensional variables) are

0 = p̃x − (g(θ)uz)z + O(ε), (16)

0 = p̃z + O(ε), (17)

0 = Em(θ)uz −
[
f(θ)θzz + 1

2
f ′(θ)θ2

z

]
+ O(ε), (18)

where

g(θ) = η1 cos2 θ + η2 sin2 θ + α1 cos2 θ sin2 θ, (19)

f(θ) = K1 cos2 θ + K3 sin2 θ, (20)

m(θ) = α3 cos2 θ − α2 sin2 θ, (21)

in which η1 = (α4 + α3 + α6)/2 and η2 = (α4 + α5 − α2)/2 are two of the so-called

Miesowicz viscosities.33 A derivation of the thin-film equations (16)–(18) is presented in

the Appendix. Appropriate choices for µ0 and K0 in (12) are µ0 = η1 and K0 = K1.

The non-dimensional parameter E is the Ericksen number defined by E = η1UH/K1

and E = H3(p0 − pL)/K1L in shear-driven and pressure-driven flow, respectively.

In the case of shear-driven flow the leading order non-dimensional boundary conditions

on u, θ and p̃ are

u = 1, θ = 0 on z = 0, (22)

u = 0, θ = ε hx on z = h, (23)
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p̃ = 0 at x = 0, (24)

p̃ = 0 at x = 1, (25)

while in the case of pressure-driven flow (22) and (24) are replaced by

u = 0, θ = 0 on z = 0, (26)

p̃ = 1 at x = 0. (27)

The boundary conditions on u and θ correspond respectively to no slip and strong homo-

geneous orientation (i.e. the director lies parallel to the boundary) at both boundaries.

There will be a three-phase contact line on the blade at the channel exit; the form that

the director will take near such a contact line is unclear, and is the subject of much on-

going discussion.32,34,35 Behaviour other than that specified by the boundary condition

(23) at x = 1 and z = h(1) is certainly possible, but for simplicity we retain (23), in

the expectation that the predicted solution overall would be qualitatively unaffected if

an alternative condition were imposed. The boundary conditions on p̃ follow from (17),

which requires that the pressure at either end of the blade is constant, and from the

fact that, since the pressure enters the Ericksen–Leslie equations only through derivative

terms, and is therefore degenerate up to an additive constant, we can take the rescaled

pressure to be equal to zero at x = 0 and x = 1 in shear-driven flow and equal to unity

at x = 0 and zero at x = 1 in pressure-driven flow.

The nonlinear dependence of g(θ), f(θ) and m(θ) on θ means again that, in general,

no significant analytical progress can be made. In order to make any progress we will

consider a second approximation concerning the size of θ.
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B. Director approximations

The boundary conditions on θ are θ = 0 at z = 0 and θ = ε hx at z = h, and it

is therefore possible that θ remains no larger than O(ε) throughout the channel. Since

no external torques (such as those induced by an applied electric field) are present, the

only internal torque that might cause θ to be larger than O(ε) is that due to the fluid

flow. In a flow-aligning material (i.e. one with α2α3 > 0) the flow effects will tend to

align the director so that θ = ±θ0, where θ0 = tan−1
√

α3/α2 is the flow-alignment angle,

whereas in a non-flow-aligning material (i.e. one with α2α3 < 0) a flow-alignment angle

does not exist, and the flow will cause the director to rotate continuously (“tumble”).

For definiteness we assume that α2 < 0 (as it is for calamitic liquid crystals) and α3 < 0,

so that the material is flow-aligning, i.e. θ0 is defined; however, as we shall describe in

Sec. V, the present analysis is also relevant to other cases. In flow-aligning materials,

α3 is typically two orders of magnitude smaller than α2, and so θ0 is usually small.

Therefore, the maximum director angle in the layer is at least as large as ε, since it

attains this value at the blade, and, if θ0 > ε, will be no larger than θ0, since this is the

maximum value that flow aligning can achieve. Therefore, since both ε and θ0 are small,

we can confidently assert that θ ¿ 1, i.e. that the distortion of the director field is small.

We now have three small parameters to consider: the aspect ratio ε, a director-angle

scale δ which is defined by θ = δθ∗, where θ∗ = O(1), and the flow-alignment angle θ0.

Since, as explained above, θ cannot be smaller than ε everywhere in the channel, there

are two main cases to consider: δ = O(ε) and δ À ε. Within these two main cases we

must consider various subcases depending on the size of the parameter θ0. If the flow has

only a weak effect on the director then δ ¿ θ0. If, however, the flow aligns the director

then δ = O(θ0). Finally, if the blade aligns the director at an angle much greater than
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the flow-alignment angle then δ À θ0.

Case 1: ε ∼ δ ¿ 1, i.e. θ is of a similar size to its value at the blade.

In this case there are three subcases to consider.

Case 1a: δ ¿ θ0: flow effects are insufficient to increase θ significantly from the

boundary-dictated value and flow alignment is not achieved.

Case 1b: δ ∼ θ0: flow effects are sufficiently strong to achieve flow alignment in part

of the channel.

Case 1c: δ À θ0: the flow-alignment angle is much less than the boundary-dictated

value of θ; flow alignment may occur, but θ will attain its maximum value at the blade.

Case 2: ε ¿ δ ¿ 1, i.e. θ is much larger than its value at the blade.

In this case there are again three subcases to consider.

Case 2a: δ ¿ θ0: flow effects increase θ significantly above the boundary-dictated

value, but they are not sufficiently strong to achieve flow alignment.

Case 2b: δ ∼ θ0: flow effects are sufficiently strong to achieve flow alignment in part

of the channel.

Case 2c: δ À θ0: this situation (in which θ is much greater than both the boundary-

dictated value and the flow-alignment angle) is not physically realisable if the liquid

crystal is flow-aligning and no external torque is present.

Of the physically realistic cases, in two situations, namely Cases 1a and 2a, we will

show that the equations simplify significantly and the solutions for u and θ are readily

found to be quadratic and cubic polynomial functions of z, respectively. Case 2b is also

tractable and we will show that in this case orientational boundary layers may exist.
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The other two situations, namely Cases 1b and 1c, result in partial differential equations

for θ that include derivatives in the x direction and fluid velocity in the z direction;

these must, in general, be solved numerically. We will now consider shear-driven flow

and pressure-driven flow separately.

III. SHEAR-DRIVEN FLOW

In this section we will consider shear-driven flow, that is, flow induced by moving

the substrate parallel to itself with a constant velocity under a fixed blade of prescribed

shape with no external pressure drop imposed.

A. Case 1a: ε ∼ δ ¿ 1 and δ ¿ θ0

In this case flow effects are insufficient to increase θ significantly from the boundary-

dictated value and flow alignment is not achieved. Thus the orientational elasticity

effects of the liquid crystal align the director. If we set δ = ε then, in the limit ε → 0,

Eqs. (16)–(18) become

0 = p̃x − uzz + O(ε), (28)

0 = p̃z + O(ε), (29)

0 = Eεuz + θzz + O(ε), (30)

where we have introduced the appropriate Ericksen number Eε = −α3E/ε. (Note that

the α3 appearing here is non-dimensionalised with η1.) The boundary conditions are

given by (22)–(25). Note that, since ε = δ, the leading order boundary condition on θ at

z = h is θ = hx.

From (30) we see that a well determined system is possible only if Eε ¿ 1 or Eε =
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O(1). This is clear from the parameter ordering in this case: if we are to ensure that

orientational elasticity effects dominate flow effects and that θ is therefore much less than

the flow-alignment angle (δ ¿ θ0), then viscous terms should be dominated by elastic

terms and therefore we cannot have Eε À 1. If Eε ¿ 1 then the leading order term in

(30) leads to a linear solution for θ and the flow has no effect on the director angle. In

the remainder of this section we will concentrate on the more interesting case Eε = O(1).

The velocity profile can be calculated directly from (28) and (29) to be

u =
h− z

h3

[
h2 − 3(h− hm)z

]
, (31)

where we have introduced the parameter hm = I2/I3 with

In =
∫ 1

0

1

hn(x)
dx. (32)

Note that the volume flux of fluid along the channel per unit width, Q, is given by

Q = hm/2.

Since θ does not enter (28) and (29) the leading order solution for the velocity given

by (31) is exactly the same as that for a Newtonian fluid.31 From (31) we see that u = 0

not only at the blade z = h but also on the curve z = z0, where z0 is given by

z0 =
h2

3(h− hm)
, (33)

and hence if h > 3hm/2 there is a region of reverse flow (i.e. a region in which u < 0)

between the curve z = z0 and the blade z = h.

The sign of the shear may play an important role in the flow of a liquid crystal.

When the shear is positive (negative) the flow will tend to align the director at the flow-

alignment angle +θ0 (−θ0). From (31) we see that uz = 0 on the curve z = zm, where

zm is given by

zm =
h(4h− 3hm)

6(h− hm)
, (34)
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and hence if h > 3hm/2 there is a region of reverse shear between the curve z = zm and

the blade z = h and if h < 3hm/4 there is a region of reverse shear between the curve

z = zm and the substrate z = 0.

Figure 3 shows the regions of the x–α parameter plane within which reverse flow and

reverse shear occur for both the linearly converging channel h(x) = 1 − α(1 − x) with

α < 0 and the linearly diverging channel h(x) = 1 + αx with α > 0. It is clear from

Fig. 3 that there is a symmetry (α, x) → (−α, 1 − x); thus, the velocity profile for the

linearly diverging channel can easily be constructed from that for the linearly converging

channel. Note also that if the blade slope is sufficiently small in magnitude (specifically

if |α| < 1) then the regions of reverse flow and reverse shear do not occur.

Figure 4 shows the velocity profiles in the linearly converging and diverging channels

with α = −2 and α = 2, respectively. In the case of the converging channel we have

hm =
2(α− 1)

α− 2
=

3

2
, (35)

and so when h > 3hm/2 = 9/4, i.e. when

x <
α2 − 1

α(α− 2)
=

3

8
, (36)

there is a region of reverse flow above the curve z = z0 and a region of reverse shear

above the curve z = zm (marked with a full line), and when h < 3hm/4 = 9/8, i.e. when

x >
(α− 1)(2α− 1)

2α(α− 2)
=

15

16
, (37)

there is a region of reverse shear below the curve z = zm (again marked with a full line).

In the case of the diverging channel we have

hm =
2(α + 1)

α + 2
=

3

2
, (38)

and so when h > 3hm/2 = 9/4, i.e. when

x >
2α + 1

α(α + 2)
=

5

8
, (39)
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there is a region of reverse flow above the curve z = z0 and a region of reverse shear

above the curve z = zm (marked with a full line), and when h < 3hm/4 = 9/8, i.e. when

x <
α− 1

2α(α + 2)
=

1

16
, (40)

there is a region of reverse shear below the curve z = zm (again marked with a full line).

Substituting the solution (31) for u into the angular momentum balance (30), inte-

grating twice and applying boundary conditions (22) and (23) leads to the solution for

θ, namely

θ =
hx

h
z − Eε

z(h− z)

2h3
[h(2h− hm)− 2z(h− hm)] . (41)

Although orientational elasticity effects dominate flow effects and we expect the sign of

the shear to have only a weak effect on the director angle, the solution (41) shows that

flow changes the director angle from a linear to a cubic function of z.

The effect of flow on the director profile is shown in Figs. 5 and 6 in the linearly

converging and diverging channels with α = −2 and α = 2, respectively. In the case of

the converging channel with α < −1, for values of Eε lying in the range 0 < Eε < Eεc1,

where the critical value Eεc1 is given by

Eεc1 =
3α2(α− 2)

(α− 1)(α2 − α + 1)
=

16

7
, (42)

the director profile is monotonic [Fig. 5(a)]. When Eε is increased past this critical value

the flow has a stronger effect and causes the director profile to develop a minimum and

a maximum [Fig. 5(b)]. As Eε increases further, past a second critical value Eεc2 given

by

Eεc2 = −α(α− 2)

α− 1
=

8

3
, (43)

the maximum disappears and the director profile has only a minimum for all values of x

[Fig. 5(c)]. The behaviour is slightly simpler when −1 < α < 0. In this case there are no
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reverse shear regions and the director profile changes from monotonic to non-monotonic

at the critical Ericksen number Eεc2.

In the case of the diverging channel with α > 1, for values of Eε lying in the range

0 < Eε < Eεc3, where the critical value Eεc3 is given by

Eεc3 =
α(α + 2)

(α + 1)2
=

8

9
, (44)

the director profile is again monotonic [Fig. 6(a)]. When Eε is increased past this critical

value the flow has a stronger effect and causes the director profile to develop a minimum

[Fig. 6(b)]. As Eε increases further, past a second critical value Eεc4 given by

Eεc4 =
2α(α + 2)

α + 1
=

16

3
, (45)

the director profile also develops a maximum [Fig. 6(c)]. As Eε increases further, past a

third critical value Eεc5 given by

Eεc5 = α(α + 2) = 8, (46)

the maximum disappears and the director profile has only a minimum for all values of

x [Fig. 6(d)]. In a similar way to the previous case, the behaviour is slightly simpler

when 0 < α < 1. In this case there are no reverse shear regions and the director profile

changes from monotonic to non-monotonic at the critical Ericksen number Eεc3.

B. Case 2a: ε ¿ δ ¿ 1 and δ ¿ θ0

In this case flow effects increase θ significantly above the boundary-dictated value,

but they are not sufficiently strong to achieve flow alignment. In the limit δ → 0,

Eqs. (16)–(18) become

0 = p̃x − uzz + O(δ), (47)
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0 = p̃z + O(δ), (48)

0 = Eδuz + θzz + O(δ), (49)

where we have introduced the appropriate Ericksen number Eδ = −α3E/δ. The bound-

ary conditions are given by (22)–(25). Note that, since ε ¿ δ, the leading order boundary

condition on θ at z = h is θ = 0.

From (49) we see that a well determined system is possible only if Eδ ¿ 1 or Eδ =

O(1). If Eδ ¿ 1 then the leading order term in (49) leads to the zero solution for θ

and the flow has no effect on the director angle. In the remainder of this section we will

concentrate on the more interesting case Eδ = O(1).

It follows from (28), (29), (47) and (48) that the leading order solution for the velocity

is again given by (31). Thus the previous discussion of the regions of reverse flow and re-

verse shear again holds. Substituting the solution (31) for u into the angular momentum

balance (49), integrating twice and applying boundary conditions (22) and (23) leads to

the solution for θ, namely

θ = −Eδ
z(h− z)

2h3
[h(2h− hm)− 2z(h− hm)] . (50)

As in the previous section, although we expect the sign of the shear to have only a weak

effect on the director angle, the solution (50) shows that flow changes the director angle

from the zero solution to a cubic function of z.

The effect of the flow on the director profile is shown in Fig. 7 in the linearly converging

and diverging channels with α = −2 and α = 2, respectively. From (50) we see that the

Ericksen number Eδ enters the solution for the director angle only multiplicatively and

that the director profile always has a minimum for all values of x. Although in Fig. 7

(and later in Figs. 10, 12 and 13) it appears that the director is not parallel to the blade

at z = h, it should be borne in mind that we have plotted the blade using the scaled
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function h∗; if instead we had used the unscaled function h = Hh∗ (so that hx = εh∗x∗ ,

with ε ¿ δ ¿ 1) then the blade slope would have been very small and it would have

been clear that the leading-order boundary condition θ(x, h) = 0 is appropriate.

C. Case 2b: ε ¿ δ ∼ θ0 ¿ 1

In this case flow effects are sufficiently strong to achieve flow alignment in part of the

channel. If we set δ = θ0 then, in the limit θ0 → 0, Eqs. (16)–(18) become

0 = p̃x − uzz + O(θ0), (51)

0 = p̃z + O(θ0), (52)

0 = Eθ0(1− θ2)uz + θzz + O(θ0), (53)

where we have introduced the appropriate Ericksen number Eθ0 = −α3E/θ0. The bound-

ary conditions are given by (22)–(25). Note that, since ε ¿ δ, the leading order boundary

condition on θ at z = h is θ = 0.

From (53) we see that if Eθ0 ¿ 1 then orientational elasticity effects dominate flow

effects and at leading order θ is the zero solution. If Eθ0 = O(1) then orientational

elasticity effects are comparable with flow effects and little analytical progress can be

made because of the presence of the θ2 term in (53). However, if Eθ0 À 1 then flow

effects dominate orientational elasticity effects, and θ = ±1 (equivalent to the unscaled

values ±θ0) everywhere except in thin orientational boundary or internal layers over

which θ changes rapidly. In the remainder of this section we will concentrate on the case

Eθ0 À 1.

The leading order solution for the velocity is again given by (31), and the regions of

reverse flow and reverse shear found earlier are particularly important in this case in

which flow effects align the director.
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By substituting the solution (31) for u into the angular momentum balance (53),

and performing a standard boundary-layer analysis36 we determine the behaviour of θ

near the boundaries. In the orientational boundary layer near z = 0 we introduce the

boundary-layer variables Z and Θ defined by

Z = (|q0|Eθ0)
1/2z, Θ(Z) = −sgn(q0)θ(x, z), (54)

where

q0 = uz|z=0 =
3hm − 4h

h2
. (55)

Thus the orientational boundary layer near the substrate z = 0 is of thickness O(E
−1/2
θ0

).

At leading order Θ(Z) satisfies

ΘZZ = 1−Θ2, (56)

subject to Θ(0) = 0 and Θ → −1 as Z → +∞, which can be solved analytically to give

Θ = 2− 3 tanh2

(
Z√
2
± β

)
, (57)

where β = tanh−1
√

2/3 ' 1.14622. In Fig. 8 we plot Θ as a function of Z showing the

structure of the boundary layer when we choose the plus sign in (57). Hence we find

that the behaviour of the director inside the orientational boundary layer near z = 0 is

given by

θ ∼ −sgn(q0)


2− 3 tanh2




( |q0|Eθ0

2

)1/2

z ± β





 . (58)

In a similar way we find that the behaviour of the director inside the orientational

boundary layer near z = h is given by

θ ∼ −sgn(qh)


2− 3 tanh2




( |qh|Eθ0

2

)1/2

(h− z)± β





 , (59)

where

qh = uz|z=h =
2h− 3hm

h2
. (60)
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In particular, the orientational boundary layer near the blade z = h is also of thickness

O(E
−1/2
θ0

).

Furthermore, if h < 3hm/4 or h > 3hm/2 then there exists a region of reverse shear

in the channel (see Sec. IIIA) and the director profile develops an orientational internal

layer within which the shear changes sign, and θ changes between its “outer” values

of −1 and 1. The orientational internal layer is near the curve z = zm given by (34)

(i.e. the curve on which uz = 0, indicated by the full lines in Fig. 4). We can analyse the

behaviour of θ inside the orientational internal layer by introducing the inner variables

ζ and φ defined by

ζ = (|h− hm|Eθ0)
1/3 z − zm

h
, φ(ζ) = −sgn(h− hm)θ(x, z). (61)

Thus the orientational internal layer near z = zm is of thickness O(E
−1/3
θ0

). At leading

order φ(ζ) satisfies

φζζ = 6ζ(1− φ2), (62)

subject to φ → ±1 as ζ → ∓∞. This system for φ, which describes the behaviour of θ

within the orientational internal layer, must be solved numerically; however, since it does

not contain any parameters, it needs to be solved only once. We used a shooting method

within the computer algebra package Maple to find an appropriate solution of this system.

With φ(0) = 0 we find that for φζ(0) > φζc, where φζc ' −1.51208, the solutions are

oscillatory, while for φζ(0) < φζc the solutions diverge to infinity. For “initial” conditions

with φ(0) 6= 0 other solutions are found; however, all of these solutions have higher energy

than the solution with φ(0) = 0 and φζ(0) = φζc and are therefore unlikely to be achieved

in practice. Thus we will be concerned with only the numerically calculated solution of

(62) with φ(0) = 0 and φζ(0) = φζc, which is shown in Fig. 9.

The regions of the x–α parameter plane within which an orientational internal layer

21



exists for both linearly converging (α < 0) and linearly diverging (α > 0) channels

correspond to the regions of reverse shear shown in Fig. 3, since the orientational internal

layer appears only when there is a change in the sign of the shear. In particular, Fig. 3

shows that there are no orientational internal layers when |α| < 1. Furthermore, due to

the symmetry (α, x) → (−α, 1−x) the director profile for the linearly diverging channel

can easily be constructed from that for the linearly converging channel.

A composite, uniformly valid leading order asymptotic solution for θ throughout the

channel is found to be

θ ∼ −


sgn(q0)


2− 3 tanh2




( |q0|Eθ0

2

)1/2

z ± β







+ sgn(qh)


2− 3 tanh2




( |qh|Eθ0

2

)1/2

(h− z)± β





 + φ̃ (ζ)



 , (63)

where

φ̃(ζ) =





−1 if
3

4
hm < h(x) <

3

2
hm

sgn(h− hm)φ(ζ) if h(x) <
3

4
hm or h(x) >

3

2
hm.

(64)

The choices of plus or minus signs in (63) lead to four distinct solutions. However, the

choice of either of the minus signs corresponds to a solution with higher energy than

the solution where both plus signs are chosen, and is therefore unlikely to be achieved

in practice. We will therefore be concerned with only the solution (63) with both plus

signs chosen.

Figure 10 shows the director profile in the linearly converging and diverging channels

with α = −2 and α = 2, respectively, and clearly shows the orientational boundary

and internal layer structures. In these particular linear channels hm = 3/2 and the

orientational internal layer exists when h < 3hm/4 = 9/8 or h > 3hm/2 = 9/4. Figure 10

also shows how the orientational internal layer merges with the upper boundary and

reappears again from the lower boundary as x increases in the converging channel, or as
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x decreases in the diverging channel. It is worth remarking that the asymptotic solution

(63) was found to be in excellent agreement with the corresponding numerical solution

of (53).

D. Case 1b: ε ∼ δ ∼ θ0 ¿ 1 and Case 1c: θ0 ¿ ε ∼ δ ¿ 1

In these cases orientational elasticity and flow effects are comparable. The leading

order linear momentum balance is, in both cases, as in previous sections; thus the velocity

is given again by (31). However, the angular momentum balance is given, in the two

cases, by

0 = θzz − Eθ0

[
−(1− θ2)θ2

0uz + εθ0(uθx + wθz + 2uxθ)− ε2wx

]
+ O(θ0), (65)

0 = θzz − Eε(θ
2uz + uθx + wθz + 2uxθ − wx) + O(ε), (66)

respectively, where we have introduced the appropriate Ericksen numbers

Eθ0 = −α2E/θ0 and Eε = −α2εE. These nonlinear equations involve partial derivatives

in both x and z and it seems that no analytical progress can be made. Some preliminary

numerical results have been obtained by the authors using numerical methods designed

to deal with boundary layers. However, this analysis is not pursued here.

IV. PRESSURE-DRIVEN FLOW

In this section we will consider pressure-driven flow, that is, flow induced by an

imposed pressure drop across the fluid underneath a blade of prescribed shape with both

the substrate and the blade fixed.

The governing equations are the same for shear-driven and pressure-driven flows,

and hence we can proceed as before and obtain solutions for the velocity u that are
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independent of the director angle θ. Specifically, the leading order solution for u subject

to the appropriate boundary conditions (23) and (25)–(27) is found to be

u =
z(h− z)

2I3h3
, (67)

where I3 is again given by (32). From (67) we see that u = 0 only at the substrate z = 0

and at the blade z = h; thus, unlike in shear-driven flow, there are never any regions of

reverse flow in the channel, that is, the fluid always flows in the direction of the imposed

pressure drop. Also, from (67) we see that uz = 0 on the curve z = zm = h/2, and

hence the shear always changes sign in the centre of the channel. Thus, there are always

regions in the channel in which the shear is positive and regions in which is negative.

The change in the sign of the shear will be important in the next three sections in which

we will study the director orientation in response to pressure-driven flow in the different

parameter regimes described in the shear-driven flow section.

Recalling that, in general, no analytical progress can be made in cases when orien-

tational elasticity and flow effects are comparable (i.e. Cases 1b and 1c) we will again

concentrate on the other three physically realistic cases.

A. Case 1a: ε ∼ δ ¿ 1 and δ ¿ θ0

In this case the governing equation for θ is given by (30) and the boundary conditions

are given by (23) and (26). Note that the leading order boundary condition on θ at

z = h is θ = hx. The solution for θ can be calculated exactly to be

θ =
hx

h
z + Eε

z(h− z)(h− 2z)

12I3h3
, (68)

where Eε = −α3E/ε.

As in shear-driven flow, we see from the solution (68) that if Eε ¿ 1 then θ is a linear

function of z and if Eε = O(1) then it is a cubic function of z. However, in this case
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the effect of the flow on the director profile when Eε = O(1) is slightly simpler than in

shear-driven flow and there are only two possible profiles, both shown in Fig. 11 in the

linearly converging and diverging channels with α = −2 and α = 2, respectively. In the

case of the converging channel, for values of Eε lying in the range 0 < Eε < Eεc1, where

the critical value Eεc1 is given by

Eεc1 =
6α(α− 2)

(α− 1)2
=

16

3
, (69)

the director profile is monotonic [Fig. 11(a)]. When Eε is increased past this critical

value the flow causes the director profile to develop a minimum and a maximum for all

values of x [Fig. 11(b)]. In the case of the diverging channel, for values of Eε lying in the

range 0 < Eε < Eεc2, where the critical value Eεc2 is given by

Eεc2 =
12α(α + 2)

(α + 1)2
=

32

3
, (70)

the director profile is again monotonic [Fig. 11(c)]. When Eε is increased past this critical

value the flow causes the director profile to develop a minimum and a maximum for all

values of x [Fig. 11(d)].

B. Case 2a: ε ¿ δ ¿ 1 and δ ¿ θ0

In this case the governing equation for θ is given by (49), where again Eδ = −α3E/δ,

and the boundary conditions are given by (23) and (26). Note that the leading order

boundary condition on θ at z = h is θ = 0. The solution for θ can again be calculated

exactly to be

θ = Eδ
z(h− z)(h− 2z)

12I3h3
. (71)

As in shear-driven flow, we see from the solution (71) that if Eδ ¿ 1 then θ is the

zero solution and if Eδ = O(1) then it is a cubic function of z and Eδ enters the solution
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for the director angle (71) only multiplicatively. However, whereas in shear-driven flow

when Eδ = O(1) the director profile always has a minimum for all values of x, here it

always has a minimum and a maximum.

Figure 12 shows the effect of the flow on the director profile in the linearly converging

and diverging channels with α = −2 and α = 2, respectively.

C. Case 2b: ε ¿ δ ∼ θ0 ¿ 1

In this case the governing equation for θ is given by (53), where again Eθ0 = −α3E/θ0,

and the boundary conditions are given by (23) and (26). Note that the leading order

boundary condition on θ at z = h is θ = 0.

As discussed in Sec. III C, we study the case Eθ0 À 1, in which flow effects domi-

nate orientational elasticity effects and θ = ±1 everywhere except for thin orientational

boundary or internal layers. We proceed as in Sec. III C performing a standard boundary-

layer analysis and we find again that thin orientational boundary layers exist near the

substrate and the blade, but that, unlike in shear-driven flow, a thin orientational inter-

nal layer always exists near the curve z = zm = h/2 on which uz = 0. Both boundary

and internal layers have the same thickness as in shear-driven flow.

A composite, uniformly valid leading order asymptotic solution for θ throughout the

channel is again given by (63) with

q0 = uz|z=0 =
1

2I3h2
> 0, qh = uz|z=h = − 1

2I3h2
< 0, (72)

with ζ redefined by

ζ =
(

Eθ0

6I3

)1/3 z − zm

h
, (73)

and φ̃ = −φ, where φ again satisfies (62) subject to the same boundary conditions.
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Figure 13 shows the director profile in the linearly converging and diverging channels

with α = −2 and α = 2, respectively, and, in particular, clearly shows the orientational

boundary and internal layer structures.

V. DISCUSSION

We considered the steady, two-dimensional shear-driven and pressure-driven flow of

a thin film of a nematic liquid crystal between a fixed blade of prescribed shape and a

planar substrate. Simplified versions of the Ericksen–Leslie equations were obtained by

assuming that both the aspect ratio of the slowly varying channel formed between the

blade and the substrate and the distortion of the director field are small.

In the cases when orientational elasticity effects dominate flow effects (Cases 1a and

2a) we have found that the equations simplify significantly and the solutions for u and

θ are quadratic and cubic polynomial functions of z, respectively. In these cases, critical

values of the Ericksen number for which there is a qualitative change in the director profile

are given explicitly. When orientational elasticity and flow effects are comparable (Cases

1b and 1c) the equations simplify to nonlinear partial differential equations that include

derivatives in the x direction and fluid velocity in the z direction; these must, in general,

be solved numerically. Finally, when flow effects dominate orientational elasticity effects

(Case 2b) orientational boundary layers exist near the substrate and near the blade and,

in addition, an orientational internal layer may also exist within the channel. In the

case of shear-driven flow, if the blade slope remains below a critical value, |α| < 1, the

internal layer does not exist, whereas in the case of pressure-driven flow the internal layer

always exists near the centre of the channel.

Velocity and director-orientation profiles have been shown for the particular choice
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of a linear blade shape; however, it is possible to construct the velocity and director-

orientation profiles for any nonlinear blade shape since the x coordinate enters (16)–(18)

essentially as a parameter.

The detailed description of the director field given in this paper may help to improve

coating and cell-filling techniques; in particular, it may indicate when defects are likely

to occur in the final product.

We conclude with some final remarks concerning the Leslie viscosities α2 and α3.

Throughout this paper we assumed that α2 < 0 (as it is for calamitic liquid crystals)

and α3 < 0, so that the material is flow-aligning, i.e. θ0 = tan−1
√

α3/α2 is defined. For

flow-aligning nematic liquid crystals it is well known that the director can lie within the

plane of shear, and thus the director field given by (1) is appropriate. On the other hand,

if α2 < 0 and α3 > 0 then the liquid crystal is non-flow-aligning, i.e. θ0 is not defined.

In this case, the director may tend to leave the plane of shear. However, recent studies37

have shown that a physically realisable solution for shear flow of a non-flow-aligning

nematic liquid crystal with the director within the plane of shear is possible when the

shear rate is low enough and the boundary conditions are appropriate. In such a case,

the present analysis follows through with only minor differences. Finally, we note that

although throughout the present work we restricted our attention to calamitic liquid

crystals (for which α2 < 0), the present analysis is also relevant to discotic liquid crystals

(i.e. liquid crystals whose constituent molecules are disc-like rather than rod-like) for

which α3 > 0.38 Specifically, the analysis for non-flow-aligning calamitics (with α2 < 0

and α3 > 0) also applies to non-flow-aligning discotics, and the analysis for flow-aligning

calamitics (with α2 < 0 and α3 < 0) follows through to the case of flow-aligning discotics

(with α2 > 0 and α3 > 0) with only minor differences.
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APPENDIX: DERIVATION OF THE THIN-FILM APPROXIMATION

In this appendix we give a derivation of the thin-film equations (16)–(18). For a steady

two-dimensional solution of the form (1)–(3), with inertia and external forces neglected,

it is found that the constitutive laws for W , g̃ and t̃ reduce to

2W = K1(− sin θ θx + cos θ θz)
2 + K3(cos θ θx + sin θ θz)

2, (A.1)

g̃ = −γ1N(−i sin θ + k cos θ)− γ2

[
ux(i cos θ − k sin θ) + 1

2
(uz + wx)(i sin θ + k cos θ)

]
,

(A.2)

and

t̃i2 = t̃2i = 0, (A.3)

t̃11 = α1A cos2 θ − (α2 + α3)N sin θ cos θ

+ α4ux + (α5 + α6)
[
ux cos2 θ + 1

2
(uz + wx) sin θ cos θ

]
, (A.4)

t̃13 = α1A cos θ sin θ + (α3 cos2 θ − α2 sin2 θ)N

+ 1
2
(α4 + α5 sin2 θ + α6 cos2 θ)(uz + wx) + (α5 − α6)ux cos θ sin θ, (A.5)

t̃31 = α1A cos θ sin θ + (α2 cos2 θ − α3 sin2 θ)N

+ 1
2
(α4 + α5 cos2 θ + α6 sin2 θ)(uz + wx)− (α5 − α6)ux cos θ sin θ, (A.6)

t̃33 = α1A sin2 θ + (α2 + α3)N sin θ cos θ

− α4ux − (α5 + α6)
[
ux sin2 θ − 1

2
(uz + wx) sin θ cos θ

]
, (A.7)
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where we have introduced

N = uθx + wθz + 1
2
(uz − wx), (A.8)

A = (cos2 θ − sin2 θ)ux + sin θ cos θ(uz + wx). (A.9)

Hence the linear momentum and the angular momentum balances in the Ericksen–Leslie

equations (5) and (6) give

0 = −p̃x + Γθx + t̃11,x + t̃13,z, (A.10)

0 = −p̃z + Γθz + t̃31,x + t̃33,z, (A.11)
(

∂W

∂θx

)

x

+

(
∂W

∂θz

)

z

− ∂W

∂θ
+ Γ = 0, (A.12)

where we have introduced

Γ = −γ1N − γ2

[
−2ux sin θ cos θ + 1

2
(uz + wx)(cos2 θ − sin2 θ)

]
. (A.13)

Furthermore, the angular momentum balance (A.12) can be written as

(K1 sin2 θ + K3 cos2 θ)θxx + (K1 cos2 θ + K3 sin2 θ)θzz

+ (K3 −K1) [(cos θ θx + sin θ θz)(− sin θ θx + cos θ θz) + 2 sin θ cos θ θxz] + Γ = 0.(A.14)

We denote the “scale” of any quantity by means of square brackets, and recalling the

non-dimensionalisation in (12) and (13) for shear-driven flow we have

[p̃x] =
µ0U

H2
, [p̃z] =

µ0UL

H3
. (A.15)

We now consider the case when ε = H/L ¿ 1; in this case the following scales are found:

[N ] =
U

H
, [A] =

U

H
, (A.16)

[Γ] =
µ0U

H
, [Γθx] =

µ0U

HL
, [Γθz] =

µ0U

H2
, (A.17)
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[t̃ij] =
µ0U

H
, [t̃ij,x] =

µ0U

HL
, [t̃ij,z] =

µ0U

H2
, (i, j = 1, 3), (A.18)

[W ] =
K0

H2
. (A.19)

(In fact, from (12) and (14) the corresponding scales for pressure-driven flow are also

given by (A.15)–(A.19), with U replaced by H2(p0− pL)/µ0L.) This enables us to make

the following approximations:

N ∼ 1
2
uz, (A.20)

A ∼ cos θ sin θ uz, (A.21)

Γ ∼ −m(θ)uz, (A.22)

with m(θ) given by (21),

t̃13 ∼ g(θ)uz, (A.23)

with g(θ) given by (19), and

W ∼ 1
2
f(θ)θ2

z , (A.24)

with f(θ) given by (20). Hence, it follows that at leading order in ε equations (A.10)–

(A.12) simplify to the thin-film equations (16)–(18) introduced in Sec. II A.
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LIST OF FIGURE CAPTIONS

Figure 1: Geometry of the blade-coating process. The substrate is moved to the right

in order to coat it with a thin film of liquid crystal.

Figure 2: Geometry of the mathematical model of a nematic liquid crystal in a slowly

varying channel under a fixed blade.

Figure 3: The x–α parameter plane showing the regions within which reverse flow and

reverse shear occur in shear-driven flow for both linearly converging (α < 0) and linearly

diverging (α > 0) channels.

Figure 4: Velocity profiles in shear-driven flow in the cases (a) h(x) = 1−α(1−x) with

α = −2, and (b) h(x) = 1 + αx with α = 2, at x = 0, 0.2, 0.4, 0.6, 0.8, 1. Reverse shear

occurs above the curve z = zm on which uz = 0 (indicated by full lines) when h > 9/4

and below z = zm when h < 9/8.

Figure 5: The director angle θ in shear-driven flow in Case 1a when h(x) = 1−α(1−x)

with α = −2, and (a) Eε = 1, (b) Eε = 2.5 and (c) Eε = 3. The curve on which θz = 0 is

indicated by a full line (for a local minimum) and a dotted line (for a local maximum).

Figure 6: The director angle θ in shear-driven flow in Case 1a when h(x) = 1 + αx

with α = 2, and (a) Eε = 0.5, (b) Eε = 3, (c) Eε = 6.5 and (d) Eε = 9. The curve on

which θz = 0 is indicated by a full line (for a local minimum) and a dotted line (for a

local maximum).

Figure 7: The director angle θ in shear-driven flow in Case 2a when (a) h(x) = 1−α(1−

x) with α = −2, and (b) h(x) = 1 + αx with α = 2, and Eδ = 2.5. The curve on which

θz = 0 is indicated by a full line. Scaled variables are plotted, and so the leading-order

boundary condition θ(x, h) = 0 is appropriate, even though it appears that the director

is not parallel to the blade at z = h.
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Figure 8: Plot of Θ as a function of Z given by (57) with the plus sign, showing the

structure of the orientational boundary layer in Case 2b.

Figure 9: Plot of φ as a function of ζ given by the numerical solution of (62) with

φ(0) = 0 and φζ(0) = φζc ' −1.51208, showing the structure of the orientational internal

layer in Case 2b.

Figure 10: The director angle θ in shear-driven flow in Case 2b when (a) h(x) =

1−α(1− x) with α = −2, and (b) h(x) = 1 + αx with α = 2, and Eθ0 = 104. The curve

z = zm on which uz = 0 is indicated by a full line. Scaled variables are plotted, and so

the leading-order boundary condition θ(x, h) = 0 is appropriate, even though it appears

that the director is not parallel to the blade at z = h.

Figure 11: The director angle θ in pressure-driven flow in Case 1a when h(x) = 1 −

α(1− x) with α = −2, and h(x) = 1 + αx with α = 2, and (a) Eε = 3 and (b) Eε = 15

in the case of a converging channel and (c) Eε = 5 and (d) Eε = 15 in the case of a

diverging channel. The curve on which θz = 0 is indicated by a full line (for a local

minimum) and a dotted line (for a local maximum).

Figure 12: The director angle θ in pressure-driven flow in Case 2a when (a) h(x) =

1−α(1− x) with α = −2, and (b) h(x) = 1 + αx with α = 2, and Eδ = 6. The curve on

which θz = 0 is indicated by a full line (for a local minimum) and a dotted line (for a local

maximum). Scaled variables are plotted, and so the leading-order boundary condition

θ(x, h) = 0 is appropriate, even though it appears that the director is not parallel to the

blade at z = h.

Figure 13: The director angle θ in pressure-driven flow in Case 2b when (a) h(x) =

1−α(1− x) with α = −2, and (b) h(x) = 1 + αx with α = 2, and Eθ0 = 104. The curve

z = zm = h/2 on which uz = 0 is indicated by a full line. Scaled variables are plotted,

and so the leading-order boundary condition θ(x, h) = 0 is appropriate, even though it
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appears that the director is not parallel to the blade at z = h.
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