Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Shear-driven and pressure-driven flow of a nematic liquid crystal in a slowly varying channel

Quintans Carou, Judit and Duffy, Brian and Mottram, Nigel and Wilson, Stephen (2006) Shear-driven and pressure-driven flow of a nematic liquid crystal in a slowly varying channel. Physics of Fluids, 18 (2). 027105-1. ISSN 1070-6631

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Motivated by the industrially important processes of blade coating and cavity filling of liquid crystalline materials, we consider steady, two-dimensional shear-driven (Couette) and pressure-driven (plane Poiseuille) flow of a thin film of a nematic liquid crystal in the slowly varying channel formed between a fixed blade of prescribed shape and a planar substrate. Specifically, blade coating motivates the study of shear-driven flow due to the motion of the substrate parallel to itself with constant velocity, while cavity filling motivates the study of pressure-driven flow due to an imposed pressure drop. We use a combination of analytical and numerical techniques to analyse the Ericksen--Leslie equations governing the fluid velocity and pressure and the director orientation in cases when both the aspect ratio of the channel and the distortion of the director field are small. We demonstrate a variety of flow and director-orientation patterns occurring in different parameter regimes. In the limit of weak flow effects flow alignment does not occur and the appropriate solution of the governing equations is found explicitly. In the limit of strong flow effects flow alignment occurs and orientational boundary layers exist near the substrate and near the blade, and in addition, an orientational internal layer may also exist within which the director orientation changes from +theta_0 to -theta_0 where theta_0 is the flow-alignment angle.