
This version is available at https://strathprints.strath.ac.uk/39545/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
EVALUATION OF THE TOXICITY OF A SUBSTITUTED 2,4-
THIAZOLIDINEDIONE MOIETY TO ISOLATED RAT HEPATOCYTES:
RELEVANCE TO GLITAZONE TOXICITY

Alison J. Meechan¹, Catherine Henderson², Geoff Coxon¹, Justice N.A. Tettey¹, M. Helen
Grant²,¹Department of Pharmaceutical Sciences, University of Strathclyde, Glasgow G4 0NR.
²Bioengineering Unit, University of Strathclyde, Glasgow G4 0NW.

Troglitazone (TGZ), a 2,4 thiazolidinedione (TZD) anti-diabetic agent, has been
associated with hepatotoxicity in type II diabetic patients. The mechanism of toxicity has
not yet been established. However, it has been reported (Kennedy et al., 2003) that the
incorporation of a sulphur atom in the cyclic imide structure of N-(3,5-
dichlorophenyl)succinimide (NDPS), analogous to the 2,4-TZD moiety in TGZ, resulted
in hepatotoxicity. In this study we have examined the relative in vitro hepatotoxicity of 3-
(3,5-dichlorophenyl)-2,4,thiazolidinedione (DCPT), which contains the 2,4-TZD moiety,
and that of its structural analogue NDPS.

NDPS and DCPT were synthesised using a modification of the method of Fujinami et al
(1971) and characterised by NMR and mass spectrometry. Hepatocytes were prepared
from male Sprague-Dawley rats (180-220g), and cell viability was measured using Trypan
Blue exclusion. Preparations with initial cell viability above 80% were used in all
experiments. Cells were incubated for 3 hours with NDPS and DCPT at (0µM, 100µM,
500µM and 1mM in dimethylsulphoxide (0.1% (v/v)) at 37°C in an atmosphere of
95%O₂/5%CO₂). Samples were taken at regular time intervals (0, 15, 30, 60, 90, 120, 180
minutes) for the measurement of viability, reduced glutathione (GSH) content and lactate
dehydrogenase (LDH) activity in the extracellular medium.

Table 1. Viability, GSH content and LDH activity after exposure of hepatocytes to DCPT and
NDPS for 180 minutes

<table>
<thead>
<tr>
<th>Treatment (mM)</th>
<th>Viability (%)</th>
<th>GSH Content (nmol/10⁶ cells)</th>
<th>LDH activity (nmol/min/10⁶ cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCPT</td>
<td>NDPS</td>
<td>DCPT</td>
</tr>
<tr>
<td>0</td>
<td>58.0±2.0</td>
<td>58.5±3.8</td>
<td>28.8±4.1</td>
</tr>
<tr>
<td>0.1</td>
<td>56.0±7.4</td>
<td>56.5±3.4</td>
<td>32.5±5.4</td>
</tr>
<tr>
<td>0.5</td>
<td>49.1±1.9</td>
<td>50.0±4.7</td>
<td>27.8±5.3</td>
</tr>
<tr>
<td>1.0</td>
<td>46.0±2.0</td>
<td>49.5±6.9</td>
<td>28.2±3.9</td>
</tr>
</tbody>
</table>

Data are Mean ± S.E.M., n=4 separate experiments.

Statistical analyses (ANOVA followed by Dunnett’s test) of the data (Table 1) obtained
for hepatocytes exposed to DCPT and NDPS did not reveal significant differences in GSH
content, LDH activity or cell viability over a 3h incubation period. These data indicate that
the incorporation of a sulphur atom in the succinamide ring of NDPS to produce the
corresponding 2,4 TZD (DCPT) does not result in an increase in hepatotoxic effects in
vitro. This finding, together with our previous report on the lack of toxicity of the 2,4-
TZD containing, rosiglitazone (Ball et al 2004 ), would suggest that a chemical
mechanism of toxicity of TGZ (if feasible) might be a function of the whole molecule
rather than the TZD moiety alone.