Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Fault location and diagnosis in a medium voltage EPR power cable

Reid, Alistair James and Zhou, Chengke and Hepburn, Donald and Judd, Martin and Siew, Wah Hoon and Whithers, Philip (2013) Fault location and diagnosis in a medium voltage EPR power cable. IEEE Transactions on Dielectrics and Electrical Insulation, 20 (1). pp. 10-18. ISSN 1070-9878

[img] PDF (Fault Location and Diagnosis in MV cable)
Fault_Location_and_Diagnosis_in_MV_cable.pdf
Accepted Author Manuscript

Download (395kB)

    Abstract

    This paper presents a case study on fault location, characterization and diagnosis in a length of shielded 11 kV medium voltage ethylene-propylene rubber (EPR) power cable. The defect was identified on-site as a low resistance fault occurring between the sheath and the core. A 43 m section was removed for further analysis. The fault resistance was characterized and the location of the defect pinpointed to within a few cm using a combination of time-difference-of-arrival location and infra-red imaging. A combination of X-ray computed tomography, scanning electron microscopy and energy dispersive X-ray spectroscopy were then applied to characterize any abnormalities in the dielectric surrounding the breakdown region. A significant number of high density contaminants were found to be embedded in the dielectric layer, having an average diameter of the order of 100 um, a maximum diameter of 310 um and an average density of 1 particle per 2.28 mm3 . Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to determine the geometry and elemental composition of some initial contaminant samples. It was concluded that contamination of the EPR layer, combined with an observed eccentricity of the cable’s core and sheath resulting in a reduced insulation gap, may have led to an electric field concentration in the region of the defect sufficient to initiate breakdown. Preventative strategies are discussed for similar families of cables, including more stringent dielectric testing requirements at the manufacturing stage and PD monitoring to detect incipient failure.