Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Analysis of tower/blade interaction in the cancellation of the tower fore-aft mode via control

Leithead, W.E. and Dominguez, S. and Spruce, C. (2004) Analysis of tower/blade interaction in the cancellation of the tower fore-aft mode via control. In: European Wind Energy Conference 2004, 2004-11-22.

[img]
Preview
PDF
23_1400_williamleithead_01.pdf
Accepted Author Manuscript

Download (718kB) | Preview

Abstract

With the increase in size of wind turbines, there is increasing interest in exploiting the pitch control capability of variable speed turbines to alleviate tower fatigue loads. The most direct method is to modify the blade pitch angle in response to a measurement of tower acceleration. It is shown that the ap mode has a central role in determining whether this approach is effective since there is a strong interaction between the blade ap-wise mode and the tower fore-aft mode. Several different approaches to the design of the controller for the tower speed feedback loop are investigated. It is concluded that a reduction in the tower loads of up to 18% is possible for multi-megawatt sized wind turbines.