Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Gyrotorque transmission system for wind turbines

Jamieson, P. and Jegatheeson, M. and Leithead, W.E. (2004) Gyrotorque transmission system for wind turbines. In: Improvements in Drive Train Related Technology, 2004-03-29.

[img]
Preview
PDF
23_1400_peterjamieson_01.pdf
Final Published Version

Download (923kB) | Preview

Abstract

The GyroTorqueTM transmission system employs gyroscopic torque reaction to transmit power offering an alternative to the gearbox and electrical variable speed drive of a conventional wind turbine. The power transmission is fundamentally oscillatory and is rectified by mechanical elements. A precessing gyro maps speed to torque and, since the wind turbine rotor inertia strongly filters rotor speed variation, output power is insensitive to wind turbulence because it reflects wind turbine rotor speed variability rather than rotor torque variability. The GyroTorqueTM system has only bearing losses and potentially a high efficiency. Mechanical control of the input to the GyroTorqueTM system enables wide range variable speed operation of the wind turbine rotor using a conventional synchronous generator. At present, a 6 gyro system driven by an axial cam and connected to a conventional synchronous generator is the preferred system. Loads and power quality have been addressed with computer simulation models of the GyroTorqueTM system. Outline assessment of system mass and cost gives encouragement that it may be less than for conventional transmission systems.