Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Modelling shading on amorphous silicon single and double junction modules

Johansson, A. and Gottschalg, R. and Infield, D.G. (2003) Modelling shading on amorphous silicon single and double junction modules. In: 3rd World Conference on Photovoltaic Energy Conversion, 2003-05-11 - 2003-05-18.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of shading amorphous silicon mini-modules is investigated by means of measurements and simulation. Several devices are measured under varying degrees of shading and the reverse bias behaviour is investigated, including the reverse breakdown voltage. A simulation using a modified single diode model for amorphous silicon is presented, in which the Bishop extension of the shunt resistance is used to simulate the behaviour of shaded devices. The differences between the effect of shading on amorphous silicon and on crystalline silicon devices are investigated based on measurements and simulations. It is shown that the thin film cells do not develop hot spots in the same manner as crystalline silicon devices; they always break down at the interconnection to the adjacent cell.