Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Modelling long-term module performance based on realistic reporting conditions with consideration to spectral effects

Williams, S.R. and Betts, T.R. and Helf, T. and Gottschalg, R. and Beyer, H.G and Infield, D.G. (2003) Modelling long-term module performance based on realistic reporting conditions with consideration to spectral effects. In: 3rd World Conference on Photovoltaic Energy Conversion, 2003-05-11 - 2003-05-18.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A model for the annual performance of different module technologies is presented that includes spectral effects. The model is based on the realistic reporting conditions but also allows for secondary spectral effects, as experienced by multi-junction devices. The model is validated against measurements taken at CREST and shows a good agreement for all devices. Combining this relatively simple model with ASPIRE, a spectral irradiance model based on standard meteorological measurements, allows the translation to other locations. The method is applied to measurements of different devices deployed in Loughborough and the significance of certain effects is discussed.