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Abstract

We describe procedures for Bayesian estimation and testing in cross sectional, panel data and
nonlinear smooth coefficient models. The smooth coefficient model is a generalization of the partially
linear or additive model wherein coefficients on linear explanatory variables are treated as unknown
functions of an observable covariate. In the approach we describe, points on the regression lines
are regarded as unknown parameters and priors are placed on differences between adjacent points
to introduce the potential for smoothing the curves. The algorithms we describe are quite simple
to implement - for example, estimation, testing and smoothing parameter selection can be carried
out analytically in the cross-sectional smooth coefficient model.

We apply our methods using data from the National Longitudinal Survey of Youth (NLSY). Using
the NLSY data we first explore the relationship between ability and log wages and flexibly model
how returns to schooling vary with measured cognitive ability. We also examine model of female
labor supply and use this example to illustrate how the described techniques can been applied in
nonlinear settings.

JEL Classifications: C11, C15, C51
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1 Introduction

Perhaps the single most important limitation to the use of fully nonparametric regression techniques

in practice is the well known curse of dimensionality problem, wherein the rate of convergence of the

nonparametric estimator slows with the number of variables treated in a nonparametric fashion. In

light of these dimensionality considerations, and given the need to control for many variables in most

empirical studies in economics, many researchers have made use of the partially linear or semilinear

regression model (e.g., Robinson (1988), Yatchew (1998) and DiNardo and Tobias (2001)). This model

mitigates the dimensionality problem by treating one (or a few) key variables nonparametrically while

maintaining parametric assumptions regarding the remaining set of explanatory variables.

An important variant of the partially linear model which has received decidedly less attention in

empirical work is the smooth coefficient model (see, e.g., Li, Huang, Li and Fu (2002)). In addition

to simply treating one or a few explanatory variables nonparametrically (as a partial linear model

would), the smooth coefficient model lets the marginal effect of a given variable be represented as an

unknown function of an observable covariate. That is, instead of restricting the marginal effect of y

with respect to x to be constant and equal to a parameter β, the smooth coefficient model writes this

marginal effect as an unknown function of some explanatory variable, say z. This specification nests

the traditional linear model as a special case when the marginal effect is found to be constant over

the support of z.

In this paper we continue to motivate the use of the smooth coefficient model in applied work and

introduce and employ Bayesian methods for estimating various models which have a smooth coefficient

form. We begin by showing how Bayesian methods can be used to fit a cross-sectional model as

described in Li et al (2002). We then develop a generalized set of tools for estimating smooth coefficient

models in a hierarchical (longitudinal) context with an endogeneity problem, and finally, in an ordered

probit model. This last model illustrates how the described methods generalize to nonlinear models

which can be regarded as linear in an equivalent latent variable representation.

The types of models we describe in this paper are of general interest and the methods we apply to

estimate them are intuitive and can easily be applied by practitioners. In our view, the particular

approaches described in this paper also offer some advantages over existing methods, and we highlight

the following benefits:

1. Estimation of the various models is relatively simple and only requires simulation from standard

distributions. In the cross-sectional model, posterior distributions can be obtained analytically.

2. Testing of the cross-sectional smooth coefficient model against parametric alternatives is straight-

forward, as marginal likelihoods and Bayes factors can also be calculated analytically.

3. The appropriate amount of smoothing of the regression functions is determined by the data via

an empirical Bayes approach. This data-based selection rule helps to mitigate concerns regarding
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subjectivity in the choice of smoothing parameters.

4. If the data-based selection rule is not used, then prior elicitation only requires that the researcher

express beliefs about the degree of “smoothness” of the nonparametric regression function rather

than beliefs regarding the values of the functions themselves.

5. Techniques are described for extending the standard univariate cross-sectional smooth coefficient

model to a panel data model with endogeneity concerns, and some nonlinear models.

6. Finally, our approach avoids the use of complicated asymptotics (which are potentially inappro-

priate in modest samples) for inference.

In addition to the theoretical contributions, we provide two different applications showing how the

estimation techniques can be used in practice. Specifically, we first use the National Longitudinal

Survey of Youth (NLSY) panel to explore the relationship between measured cognitive ability and

log wages and also to determine how returns to schooling vary with this measure of cognitive ability.

While the issue of nonlinearities in ability has been documented in several previous studies (e.g.,

Cawley et al (1999), Heckman and Vytlacil (2001), DiNardo and Tobias (2001) and Tobias (2003)),

fewer studies have investigated how observed ability affects the return to education. Among those

that have (e.g., Blackburn and Neumark (1993), Heckman and Vytlacil (2001) and Tobias (2003)),

individuals have either been classified into discrete educational groups to facilitate estimation within

groups,1 particular functional forms such as education-ability interactions have been assumed,2 or the

panel structure of the data has not been fully exploited.3 The smooth coefficient model described in

this paper can fully account for the panel structure of the NLSY, imposes virtually no structure on

the way returns to schooling vary with ability, and uses the workhorse Mincerian linear-in-schooling

model as the point of departure. We find that returns to education are essentially constant over the

ability support, and also find that simpler (and widely-used) parametric models perform adequately

in capturing key features of the NLSY data.

We then introduce a second application (also using NLSY data) and continue to investigate the role of

measured cognitive ability on outcomes of interest. This application also illustrates how the smooth

coefficient model can be used in nonlinear models that can be regarded as linear in suitably-defined

latent data. We take a cross section of NLSY outcomes in 2000 and model the labor supply choices

made by a sample of married white females.4 Specifically, we model the decisions made by these

females to remain out of the labor force, to work part time or to work full time, and thus introduce

1Heckman and Vytlacil (2001) primarily consider three educational groups: high school dropouts, high school gradu-
ates and college graduates.

2Blackburn and Neumark (1995), for example, use ability-education-time interactions in their model. Heckman and
Vytlacil (2001) relax many of these restrictions by using a linear regression spline with knots placed at each ability
quartile.

3Tobias (2003), for example, primarily makes year-by-year comparisons, and categorizes individuals into two groups
- those with 12 or fewer years of schooling, and those with some college education.

4See Gangadharan and Rosenbloom (1996), Angrist and Evans (1998), Buchmueller and Valetta (1999), Anderson
and Levine (1999) and Chou and Staiger (2001), among many others, for previous work on female labor supply issues.
To our knowledge, no studies involving female labor supply have estimated a model with the flexibility of the smooth
coefficient specification described in this paper.
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a three choice ordered probit model. Following Nandram and Chen (1996), we employ a rescaling

transformation to improve the mixing of our chain and show how the smooth coefficient model can

be applied in this nonlinear (and reparameterized) setting. In this application we clearly see the

importance of an ability-spousal income interaction in our smooth coefficient ordered probit model.

As a result, we obtain predicted probabilities of each employment state that differ significantly from

those obtained from a default linear specification. Finally, marginal likelihood calculations reveal a

preference for the generalized smooth coefficient model over this baseline linear alternative.

The outline of this paper is as follows. In the next section we introduce our class of smooth coefficient

models and briefly describe our posterior simulators for fitting them. We begin with a univariate cross-

sectional smooth coefficient model. Section 2.2 takes up the case of a longitudinal smooth coefficient

model with an endogeneity problem while section 2.3 introduces an ordered probit model. In section

3 we provide some generated data experiments to illustrate the performance of our methods. Section

4 describes the NLSY data used in our empirical analyses, and results from our two applications are

provided in sections 5 and 6. The paper concludes with a summary in section 7, and remaining details

regarding priors and posterior simulators can be found in the appendix.

2 The Models

In this section we introduce three related smooth coefficient models and discuss Bayesian estimation

and testing strategies for each model. Though these particular models are primarily introduced with

an eye toward our empirical examples, the specifications we consider are quite general and can be used

in a variety of applications.

2.1 A Cross-Sectional Smooth Coefficient Model

To begin we consider the simplest case of a cross-sectional smooth coefficient model as in Li et al

(2002):

yi = wiθ + f1(Ai) + sif2(Ai) + εi, i = 1, 2, · · ·N (1)

where, in this cross-sectional case, yi is a scalar, wi is a kw vector of exogenous variables treated

parametrically, si is an explanatory variable and f1(·) and f2(·) are unknown functions which depend

on an exogenous variable Ai. We assume εi
iid
∼ N(0, σ2

ε).
5

5Note that this assumption can be easily relaxed by replacing it with the assumption that ǫ follows a finite mixture of
Normals (e.g., McLachlan and Peel (2000)). To fix ideas on the estimation of f1 and f2 we do not describe in detail how
this mixture of Normals extension could be done. Essentially, the algorithm we describe would be used within a given
mixture component, and individuals can be ascribed to the various components of the mixture in a data augmentation
step [e.g., Tanner and Wong (1987), Albert and Chib (1993)].
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This model is termed a “smooth coefficient model” since the function f2 acts as the “coefficient” on si,

and we model this function as depending in a ”smooth” way on an observed covariate A. To provide

a concrete example of the potential usefulness of such a model, let us jump ahead to our empirical

application. In our returns to schooling application yi will denote the log hourly wage received by

individual i, Ai will be a continuous measure of cognitive ability, si will denote years of schooling

completed, and wi will denote a remaining set of characteristics affecting wages. Thus, the smooth

coefficient model will enable us to investigate if there are possible nonlinearities in the ability-log wage

relationships through f1 (e.g., Cawley et al (1998), Heckman and Vytlacil (2001), DiNardo and Tobias

(2001)) and additionally will enable us to flexibly estimate how returns to schooling vary with ability

through the function f2.

We develop a semiparametric framework similar to that described in Koop and Poirier (2004a,b)

to model f1 (Ai) and f2 (Ai). Intuitively, we treat each point on the nonparametric regression lines

as an unknown parameter. Specifically, let γji = fj (Ai) for j = 1, 2 denote the N points on each

nonparametric regression line and stack them into matrices as γj = (γj1, .., γjN )′ , j = 1, 2. Letting

µi = wiθ + f1(Ai) + sif2(Ai) denote the value of the conditional mean function in (1), we can write

µ = Wθ + INγ1 + Sγ2 ≡ V λ, (2)

where µ = (µ1, .., µN )′and W is an N × kw matrix constructed from wi in an analogous fashion.

Furthermore, IN is the N ×N identity matrix, S is a diagonal matrix with ith diagonal element given

by si, V = (W : I : S) and λ = (θ′, γ′

1, γ
′

2)
′.

Without imposing any additional structure to our model, we are plagued by the problem of insufficient

observations in that we have more than twice as many parameters as observations. The complications

caused by the high dimensionality of the resulting parameter space, however, can be resolved through

the use of prior information about the degrees of smoothness of the nonparametric regression lines.

The remainder of this section describes how we approach specifying this smoothing prior.

Without loss of generality, we assume the data are ordered so that A1 < A2 < · · · < AN . Define the

(N − 2) × N second-differencing matrix as:6

D =




1 −2 1 . . . . 0
0 1 −2 1 0 . . 0
. . . . . . . .
. . . . . . . .
0 0 . . . 1 −2 1




, (3)

so that Dγj is the vector of second differences of points on the jth nonparametric regression line,

denoted ∆2γji. For future reference, partition D as follows: D = [D∗ : D∗∗], where D∗ is (N − 2) × 2

and define the 2 × 1 vector of initial conditions in f1 and f2 as γ0
j for j = 1, 2. Let γ∗

j be γj with

these first two elements deleted. Rearranging the columns of V conformably into the matrix V ∗ and

defining λ∗ =
(
θ′, γ0′

1 , γ0′
2 , γ∗′

1 , γ∗′

2

)
′

we can write (2) as

µ = V ∗λ∗. (4)

6Note that other degrees of differencing can be handled by re-defining (3) as appropriate (see, e.g., Yatchew (1998)
pages 695-698 or Koop and Poirier (2004a)).
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Prior information about the degrees of smoothness in the nonparametric regression lines can be ex-

pressed in terms of Rλ∗, where the 2 (N − 2) × (kw + 2N) matrix R is given as

R =

[
0 D∗ 0 D∗∗ 0
0 0 D∗ 0 D∗∗

]
. (5)

For future reference, partition R as R = [R1 : R2] where R1 is an 2 (N − 2)× (kw + 4) matrix and R2

is 2 (N − 2) × 2 (N − 2).

It will prove to be useful to transform (4) to work directly with the parameter vector of second

differences. Using standard transformations (see, e.g. Poirier (1995) pages 503-504), (4) can be

written as:

µ = X(1)β1 + X(2)β2 ≡ Xβ, (6)

where β = (β′

1, β
′

2)
′, β1 =

(
θ′, γ0′

1 , γ0′
2

)
′

, β2 =
[
(Dγ1)

′ , (Dγ2)
′
]
′

, X(1) = V (1) − V (2)R−1
2 R1 and X(2) =

V (2)R−1
2 . In the previous expressions we have used the partition V ∗ =

[
V (1) : V (2)

]
where V (1) is

N × (kw + 4). Note that β2 is the vector of second differences of the points on the nonparametric

regression lines and it is on this parameter vector that we place our smoothness prior.

To complete our Bayesian analysis of the cross-sectional smooth coefficient model, we specify a natural

conjugate prior. Using the standard notation (e.g. Poirier (1995) p. 526) for the Normal-Gamma (NG)

prior, we write

β, σ−2
ε ∼ NG(β, V β , s−2, ν). (7)

Note that this prior implies β|σ−2
ε ∼ N

(
β, σ2

εV β

)
and marginally, σ−2

ε has a Gamma distribution with

mean s−2 and variance 2/[νs4] .

Of course, any values for the prior hyperparameters ν, s−2, β and V β can be chosen, yet it is of

interest to consider the use of suitably “diffuse” priors so that data information is predominant. In

our empirical work we use a noninformative prior for the error variance (i.e. ν = 0 and, with this

choice, s−2 is irrelevant) and add prior information on β to control the degree of smoothness of the

nonparametric regression lines. To this end we set β = 0kw+2N so that the second differences of the

regression functions (and coefficients on w) are centered over a prior mean of zero. Below we focus on

the selection of the prior covariance matrix V β which will govern the smoothness of the nonparametric

regression curves.

We describe a particular strategy for selecting V β that requires a minimal amount of subjective prior

information. In particular, we assume

V β = V β(η1, η2) =




V 1 0 0
0 V (η1) 0
0 0 V (η2)


 , (8)

where V 1 is the prior covariance matrix for the parameters on the linear variables w and the initial

conditions of our regression curves (i.e. the prior covariance matrix for β1). Setting V −1
1 = 0 yields the

noninformative choice. The (N −2)× (N −2) matrices V (ηj) are the prior covariance matrices placed
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over the second differences of fj . Each of these depends on a scalar parameter ηj which will act as a

smoothing parameter, similar in spirit to a bandwidth parameter in classical kernel-based methods.

Several sensible forms for V (ηj) can be chosen, as discussed in Koop and Poirier (2004a). In this

section we set V (ηj) = ηjIN−2. This prior centers the second differences of the functions f1 and f2

around a mean of zero, and the scalar parameters η1 and η2 control the tightness around this mean

and thereby the degree of smoothness of these functions. Our prior information about the smoothness

of these curves is of the form: ∆2γji ∼ N
(
0, σ2

εηj

)
for i = 3, .., N , j = 1, 2.7 Intuitively, as η1 and

η2 → ∞, the prior becomes “diffuse,” and with no additional structure placed on the model the

resulting estimates will be undersmoothed. Conversely, as η1 and η2 → 0, prior information will

dominate, and will restrict the second differences to be identically zero (oversmoothing).

Koop and Poirier (2004a,b) discuss the relationships between this general approach (i.e. treating

points on the nonparametric regression lines as unknown parameters in a Normal linear regression

models and using priors to smooth) and other approaches to non- and semiparametric regression.

They stress that an important advantage of this approach over others is the simplicity and clarity

obtained by staying within the familiar framework of the Normal linear regression model. The reader

interested in related approaches is referred to (among many others) Green and Silverman (1994) for a

discussion of the penalized likelihood approach, Silverman (1985) or Wahba (1983) for a discussion of

splines and Smith and Kohn (1996) for a clever implementation of the spline approach using Bayesian

model averaging. It is worth noting that, unlike our paper, these papers do not consider the smooth

coefficient model, nor panel data, nor allow for endogeneity.

As stressed in Koop and Poirier (2004b) semiparametric regression models of the sort we consider can

also be considered as state space models simply by changing i subscripts to t and treating nonparamet-

ric components such as f1(Ai) as states, our smoothness priors as state equations and our empirical

Bayesian procedure (outlined below) as being analogous to estimating the signal-noise ratios. Thus,

all the contributions made in this paper add to the state space literature as well. Koop and Poirier

(2004b) only consider the simplest nonparametric regression model, so one can interpret the present

paper as extending this in the direction of the smooth coefficient model (in both linear and nonlinear

settings) with panel data and endogeneity.

At a more general level, the relationship between state space models and nonparametric regression

has been noted before (see, e.g., Ansley and Kohn (1985) and Harvey and Koopman (2000)). There is

a large literature related to Bayesian analysis of state space models (see, among many others, Carter

and Kohn (1994), DeJong and Shephard (1995), Fruhwirth-Schnatter (1994a,b), Hickman and Miller

(1981), Koop and van Dijk (2000), Shively and Kohn (1997) and West and Harrison (1997)). With

the partial exception of Koop and van Dijk (2000), prior elicitation has not been a central focus of this

literature. Hence, another contribution of our paper is to develop new ways of thinking about prior

elicitation in sophisticated state space models (including extensions for panel data and endogeneity).

7This approach to prior elicitation does not include any information in Ai other than order information (i.e. data is
ordered so that A1 < ... < AN ). If desired, the researcher could account for non-uniform spacing of the data by eliciting
a prior of the form ∆2γij ∼ N

�
0, ηj∆

2Ai

�
.
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2.1.1 Estimation and Testing in the Cross-Sectional Smooth Coefficient Model

The approach of treating values of the functions f1(Ai) and f2(Ai) as parameters to be estimated

proves to be quite convenient, since the resulting model fits into the framework of a linear regression

model with a natural conjugate prior. As such, we can borrow from existing results for the analysis

of such a model to address issues of estimation and testing in the cross-sectional smooth coefficient

model.

Using standard Bayesian results for the Normal linear regression model with natural conjugate prior

(e.g. Poirier (1995) p. 527), it follows that the posterior for β and σ−2
ε is

β, σ−2
ε |Data ∼ NG(β, V β , s−2, ν)

where

β = V β

(
V −1

β β + X ′y
)

, (9)

V β =
(
V −1

β + X ′X
)
−1

, (10)

ν = ν + N (11)

and

νs2 = νs2 +
(
y − Xβ

)
′
(
y − Xβ

)
+

(
β − β

)
′

V −1
β

(
β − β

)
. (12)

The properties of the Normal-Gamma distribution also imply that it is trivial to transform back from

the parameterization in (4) to the original parameterization given in (2).

Provided V −1
β is non-singular, it can be verified that this is a proper posterior despite the fact that the

number of explanatory variables exceeds the number of observations. In fact, we can go even further

than this and show that a proper posterior exists even if V −1
1 = 0, provided W ′W is nonsingular.

Using properties of the Normal Gamma distribution, it also follows that the marginal posterior for β

is multivariate-t (see, e.g., Poirier (1995), p. 128) and thus analytical results for the Normal linear

regression model with a natural conjugate prior can be used to carry out estimation and inference in

the smooth coefficient model.

When testing the semiparametric smooth coefficient model against parametric alternatives or select-

ing values of the smoothing parameters, we calculate log marginal likelihoods for the models under

consideration. Marginal likelihoods are widely used in Bayesian testing and their use arises from the

observation that for any two competing models M1 and M2:

p(M1|y)

p(M2|y)
=

(
p(y|M1)

p(y|M2)

)
p(M1)

p(M2)
. (13)

The left-hand side of (13) gives the posterior odds of Model 1 in favor of Model 2, and the ratio

p(M1)/p(M2) is the prior odds ratio, typically taken to be unity. The expression in parentheses

following the equality in (13) is the Bayes factor or the ratio of marginal likelihoods, with p(y|Mi)

denoting the marginal likelihood for Model i. Thus, under equal prior odds, posterior odds ratios can

be obtained by exponentiating the difference between the log marginal likelihoods.
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The marginal likelihood associated with the linear regression model takes the form (Poirier (1995), p.

543):

p (y) = c

(∣∣V β

∣∣
∣∣V β

∣∣

) 1

2 (
νs2

)
−

ν
2 , (14)

where

c ≡
Γ

(
ν
2

) (
νs2

) ν
2

Γ
(ν

2

)
π

N
2

. (15)

Note that, formally, the marginal likelihood is not defined if we use a noninformative prior for the

error variance (i.e. when ν = 0) since the integrating constant is zero. However, insofar as we are

using Bayes factors comparing models with the same noninformative prior for the error variance, the

integrating constant cancels out and is irrelevant. Alternatively, setting ν = 0 and ignoring c can be

justified as being arbitrarily close to what would happen if you set ν = ε for arbitrarily small ε.

There are several useful contexts in which one would be interested in calculating marginal likelihoods

as in (14). First, posterior odds ratios can be used to provide an attractive and objective method for

determining the appropriate degree of smoothing in our model. That is, M1 and M2 could both be

smooth coefficient models, differing only in the values used for η1 and η2. If we calculate marginal

likelihoods (using equation 14) for a variety of (η1, η2) combinations over a two dimensional grid, then

we can find values of the smoothing parameters that are most supported by the data. Techniques such

as this, which select prior hyperparameters which maximize the marginal likelihood, are referred to as

empirical Bayes methods.8

Second, posterior odds ratios can be used to test the semiparametric smooth coefficient model against

various parametric or semiparametric (e.g. the partial linear model) alternatives. As an example, let

M1 denote the smooth coefficient model with optimally chosen values of the smoothing parameters

and let us consider a particular competitor, denoted M2, which imposes the parametric restrictions

f1(A) = λ0 + λ1A and f2(A) = λ2. In the context of our application, M2 would denote the widely-

estimated log wage equation with a linear ability term and a constant return to education.9 To

calculate the marginal likelihood associated with M2, retain the specification µ = Xβ as in (6) where

X and β are now defined as follows:

X = [W ιN A S] and β = [θ′ λ0 λ1 λ2],
′

with ιN denoting a N × 1 vector of ones. If we employ a natural conjugate prior, then the marginal

likelihood for M2 will be as in (14) (except with the new definition of X and the prior hyperparameters

used in M2 plugged in).

8As an aside, it is worth noting that the use of empirical Bayesian methods requires a small additional amount of prior
information (relative to simply estimating the smooth coefficient model for a given choice of prior hyperparameters). As
discussed in Koop and Poirier (2004b) use of noninformative priors over all the parameters other than β2 is not possible
since an improper posterior for η1 and η2 results. A proper prior is needed for either the error variance or the initial
conditions. This motivates our choice of a proper (albeit virtually noninformative) prior for the initial conditions in the
empirical section below. Note that we could be improper over these initial conditions as well if we were only interested
in estimating the model for given values for η1 and η2.

9Note that this particular example is without loss of generality - one can impose any parametric restrictions, and
conduct the model comparison in an identical manner.
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Thus, testing the smooth coefficient model against a parametric or semiparametric alternative can also

be done in a straightforward manner. Prediction, the other primary activity of the econometrician,

can also be carried out rather simply using textbook results from the Normal linear regression model

with natural conjugate prior (see, e.g., Poirier (1995), pages 551-558).

2.2 A Longitudinal (Hierarchical) Smooth Coefficient Model

In this section we take up the case of a longitudinal or hierarchical smooth coefficient model.10 In this

panel setting we write

yit = αi + z′itδ + εit, i = 1, 2, · · ·N, t = 1, 2, · · ·Ti, (16)

where yit is the dependent variable (in our application of section 5, it is the log of the hourly wage of

individual i at time t), zit is a vector of length kz containing observations on exogenous explanatory

variables which are time varying and εit
iid
∼ N

(
0, σ2

ε

)
. Our model is completed by specifying the

following two equations:

αi = wiθ + f1(Ai) + sif2(Ai) + ui (17)

si = riπ + vi. (18)

In terms of our application, Ai represents a continuous measure of individual i′s cognitive ability,

si denotes the number of years of schooling completed and wi are a remaining set of time-invariant

characteristics. Thus, the model described above permits (within a panel setting) baseline nonlin-

earities between ability and log wages through f1 and also permits returns to education to depend

nonparametrically on ability through f2. Finally, note that µi = wiθ + f1(Ai) + sif2(Ai) can be re-

parameterized as µi = xiβ as in (6) to work directly with second differences of the regression functions.

In what follows, we assume that the mean function has been transformed in this way, and thus will

work directly with the vector β. This parameter vector includes θ, the initial points on the regression

curves, and the second differences of the regression functions.11

The restriction that all of the nonparametric components enter through the second stage of the model

is imposed with an eye toward our application. In this application we will want to treat our time-

invariant measure of cognitive ability nonparametrically and allow for flexible interactions between

ability and a linear schooling term (which is also time-invariant). In terms of estimation, however, this

focus is essentially without loss of generality - similar methods to those described here can be used to

fit this model when some (or all) of the nonparametric components appear at the first (time-varying)

stage of the model.

10For some discussion and applications of Bayesian hierarchical modeling, see, for example Laird and Ware (1982),
Gelfand et al (1990) and Lange et al (1992), among many others.

11From a Bayesian point of view, we have specified a hierarchical prior for αi, although a non-Bayesian may wish
to interpret it as part of the likelihood function. There is a huge Bayesian literature on parametric panel data models
or extensions to models such as probit (see, among many others, Chib and Greenberg (1995), Chib (2004), Geweke,
Keane and Runkle (1997), Koop, Osiewalski and Steel (1997) and McCulloch and Rossi (1994)) and most of these papers
emphasize the hierarchical prior interpretation. Our treatment of longitudinal smooth coefficient model draws upon
standard, well-known results from this literature.
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Finally, we also wish to consider the case where the quantity of schooling attained, si, is endogenous,

leading us to specify the reduced form schooling equation in (18). In (18), ri is a kr vector of exogenous

variables, possibly including wi and Ai, but also including one or more instruments which are not

present in (16) or (17). We consider a particular form of endogeneity problem wherein ui and vi are

potentially correlated. In terms of our application, the parameter αi is interpreted as an “individual”

effect describing if a person earns log hourly wages that are higher or lower than expected, given

the observable characteristics z. We can explain some of this variation in individual effects through

time-invariant observables wi (like parental education, etc.), ability Ai and schooling si. However,

individual-level characteristics like “motivation” or “drive” also presumably affect one’s wages, and

are captured in the error term ui. It is also reasonable to assume that this unobserved motivation

or drive is a factor that influences si, the quantity of schooling attained. As such it is seemingly

reasonable to embrace the potential for correlation between ui and vi in an empirical analysis.

To intuitively describe how failure to account for this endogeneity problem may bias our results, first

note that αi is identifiable from (16), and when Ti is reasonably large, the marginal posterior for

αi will tend to be dominated by data information from (16). To make our argument clear, let us

suppose for the moment that the αi are known. Equations (17) and (18) then constitute a triangu-

lar simultaneous equations model. If ui and vi are sufficiently correlated, a cross-sectional smooth

coefficient analysis using only (17) (again treating αi as known) will yield biased and inconsistent

estimates of the parameters of interest. In this case, mean independence is violated as E(ui|si) 6= 0.

In short, if we ignore endogeneity, the coefficient (function) on the schooling variable si captures both

the (structural) quantity of schooling return as well as the premium paid for unobserved “motivation”

or “drive.” As such, when failing to account for this potential endogeneity problem, we might expect

to obtain estimates of the return to education that are upward biased.

To account for the potential endogeneity of schooling, we make the assumption

[
ui

vi

]
iid
∼ N (02, Σ) where Σ ≡

[
σ2

u σuv

σuv σ2
v

]
,

and to implement a Bayesian analysis we require priors for δ, σ2
ε , Σ−1, π and β. For the first four of

these we make standard choices:

δ ∼ N(δ, V δ), (19)

σ−2
ε ∼ G(s−2

ε , νε), (20)

Σ−1 ∼ W
(
[ρA]−1, ρ

)
(21)

π ∼ N(π, V π) (22)

where W (·, ·) denotes a Wishart density (e.g., Poirier (1995), pages 136-138), the typical conjugate

prior for the inverse covariance matrix. To complete the prior specification, we place a smoothing

prior over the elements of β (as described in section 2.1) and thus specify:

β ∼ N(β, V β), (23)

where V β = V β(η1, η2) as defined in (8).

10



2.2.1 Estimation and Testing in the Hierarchical Smooth Coefficient Model

Unlike the cross-sectional model of section 2.1, posterior distributions cannot be derived analytically in

the hierarchical smooth coefficient model. However, posterior computation can be implemented using

the Gibbs sampler - a widely used simulation-based algorithm which involves iteratively sampling from

the posterior conditionals of the model. Despite its seeming complexity, estimation of the model in

(16)-(18) requires only the ability to sample from standard distributions. Complete details behind this

procedure are described in the appendix.

Model comparison (e.g. testing the smooth coefficient model against a parametric alternative) or

empirical Bayesian selection of η1 and η2 can be done using the same strategy involving marginal

likelihoods as in Section 2.1. Unlike the cross-sectional smooth coefficient model of the previous

section, however, marginal likelihoods for the hierarchical smooth coefficient model are not available

in closed form, which poses a set of computational challenges. In particular, to use empirical Bayesian

methods to estimate η1 and η2, the Gibbs sampler must be run for every (η1, η2) combination over

a two-dimensional grid. This need for computational simplicity motivates our use of approximate

methods for the necessary marginal likelihood calculation.

To this end we use the Laplace-Metropolis approximation12 for the marginal likelihood (see, e.g.,

Raftery (1996), page 171). Let Γ = [δ, β, π, σuv, σ
2
ǫ , σ

2
v , σuv] denote the parameters of the model other

than α. We first integrate the individual effects α out of the likelihood function13 to obtain:

p (y, s|Γ) ∝ p(s|Γ)
N∏

i=1

|Ci|
−

1

2 ∗ (24)

exp

[
−

1

2

(
yi − ιTi

[
µi +

σuv

σ2
v

(si − riπ)

]
− ziδ

)
′

C−1
i

(
yi − ιTi

[
µi +

σuv

σ2
v

(si − riπ)

]
− ziδ

)]
,

where µi = xiβ and Ci = σ2
ǫ ITi + σ2

α(1 − ρ2
uv)ιTiι

′

Ti
. Then a highly accurate approximation to the

marginal likelihood is given by:

p (y, s) ≈ (2π)
1

2
(2N+kw+kz+kr+4) |Ψ|

1

2 p
(
y, s|Γ̂

)
p

(
Γ̂
)

, (25)

where ·̂ denotes the posterior mode and Ψ is the posterior covariance matrix of Γ.14 Raftery (1996)

remarks that the Laplace-Metropolis approximation is often much more accurate than other methods

if the number of replications in the posterior simulator is relatively small. Finally, empirical Bayesian

selection of smoothing parameters can be conducted using the same procedure described in Section

2.1 using the Laplace-Metropolis approximation.

12Of course, a variety of methods could be employed to calculate the marginal likelihood. In this paper we do not take
up the issue of comparing the performances of various methods within the class of smooth coefficient models and defer
this as a subject for future work.

13We first obtain the joint distribution of (y, s) given the parameters and then integrate out α by marginalizing over
the conditional distribution of α|s. See the appendix for related discussion.

14In practice, the simulated draws can be used to estimate the posterior mode and posterior covariance matrix.
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2.3 A Smooth Coefficient Ordered Probit Model

Our second application will illustrate how our smooth coefficient approach can also be applied in many

nonlinear models. With an eye toward our female labor supply application, we consider the following

smooth coefficient version of an ordered probit model:

zi = wiθ + f1(Ai) + f2(Ai)si + εi, εi
iid
∼ N(0, 1), (26)

and

yi =





1 if α0 < zi ≤ α1

2 if α1 < zi ≤ α2
...

...
L if αL−1 < zi ≤ αL

,

where (yi, Ai, wi, si) denotes the observed data and zi represents an unobservable latent variable. For

identification purposes we set α0 = −∞, α1 = 0 and αL = ∞. Finally, note again that the mean

function µi = wiθ + f1(Ai) + f2(Ai)si can be written as xiβ, as described in section 2.1. In what

follows, we work with this parameterization and write (26) as zi = xiβ + εi.

Given that the model is linear in the latent data z (but nonlinear when marginalized over z), data

augmentation (e.g., Tanner and Wong (1987)) can be used to greatly simplify the required calculations.

That is, we augment the parameter space with the latent data z, obtain the complete data likelihood

function (e.g. Albert and Chib (1993)) and augmented joint posterior distribution.

We will proceed in the same manner as we did for the cross sectional model (see Section 2.1) and first

sort the data by values of A. We will impose a degree of smoothing on the regression curves by placing

a smoothing prior over the elements of β. Specifically, we let α = [α2 α3 · · · αL−1], and specify

p(β, α) = p(α)p(β) ∝ φ[β; 0, V β(η1, η2)],

with V β as defined in (8) and φ(x; µ, σ2) denoting a Normal density for x with mean µ and variance

σ2. The augmented joint posterior distribution is then obtained:

p(α, β, z|y) ∝

[
N∏

i=1

exp

(
−

1

2
(zi − xiβ)2

)
I(αyi−1 ≤ zi < αyi)

]
φ(β; 0, V β),

with I(·) denoting the standard indicator function. It has been noted (e.g. Cowles (1996)) that

the standard Gibbs algorithm for the ordered probit suffers from slow mixing, particularly in larger

samples. To surmount this problem, we follow Nandram and Chen (1996) and introduce a rescaling

transformation. To fix ideas and remain consistent with our application, we also focus below on the

case of a three-level ordered probit model and thus set L = 3.15

For this transformation, we let

δ = (1/α2), α∗ = δα, β∗ = δβ, z∗ = δz.

15In models with more than three levels (choices), an additional step will be required to sample the unknown trans-
formed cutpoints α∗. Nandram and Chen (1996) suggest a Metropolis-Hastings step using a Dirichlet proposal density,
which can also be adopted in this smooth coefficient extension.
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We then obtain the joint posterior distribution of (δ2, β∗, z∗|y) by a change of variables. Letting kθ

denote the dimension of θ and noting that the Jacobian of this transformation is (δ2)−(N+k+3)/2 with

k = 2N + kθ, we obtain

p(δ2, β∗, z∗|y) ∝ (δ2)−3/2

[
N∏

i=1

φ(z∗i , wiβ
∗, δ2)I[α∗

yi−1
< z∗i ≤ α∗

yi
]

]
φk(β

∗, 0, δ2V β(η1, η2)). (27)

Note that in this transformed model there are no unknown cutpoints since α∗

2 = 1. As described in

the appendix, this model can be fit quite simply using the Gibbs sampler, and in our experience, the

reparameterization described above significantly improves the mixing of the parameter chains. This

example also reveals how our smooth coefficient model can be employed in a variety of other models

that are nonlinear, but can be equivalently represented as a model that linear is in some latent data.

For instance, smooth coefficient probit, tobit, generalized tobit, multinomial probit and stochastic

frontier models can be handled in the same way.

3 Generated Data Experiments

In this section we perform several generated data experiments to illustrate the performance of our

methods in recovering the true shape of the regression functions. We first consider the univariate

smooth coefficient model (section 2.1) and perform two experiments using this model. The first

experiment generates artificial data from a highly nonlinear model while the second generates data

from a linear model. For the nonlinear data set, we extend the data generating mechanism used in

Yatchew (1998, Figure 3). In particular, for i = 1, .., 200 we generate

yi = 2wi + Ai cos(4πAi) + sin (2πAi) si + εi, (28)

where εi, Ai and wi are i.i.d. random variables drawn from a N (0, 1) distribution and si
iid
∼ U [0, 10],

with U denoting the uniform distribution.

In addition to carrying out posterior inference on all the parameters in the smooth coefficient model,

we calculate the Bayes factor comparing the smooth coefficient model to a particular parametric model

where all explanatory variables enter linearly:

yi = wiθ + λ0 + λ1Ai + λ2si + εi. (29)

Our general prior elicitation strategy is to use the smoothness prior for the nonparametric regression

lines (with smoothness parameters η1 and η2 chosen using empirical Bayesian methods), to select

proper but relatively noninformative priors for parameters which are present in one model but not

the other, and to choose noninformative (or virtually noninformative) priors for all parameters which

are common to both models. In terms of the NG(β, V β, s−2, ν) natural conjugate prior described in

Section 2.1 we set ν = 0 (and, with this value, s−2 is irrelevant). For θ (which is common to both

models) we use a virtually noninformative prior by setting the appropriate diagonal elements of V 1

to 1020 (see (8)). For the initial conditions (which appear only in the smooth coefficient model), we
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set the appropriate diagonal elements of V 1 to 100. For the parametric model, the prior mean of

λ = (λ0, λ1, λ2) is set to zero and the prior covariance matrix to 100σ2
εI3. We use empirical Bayesian

methods to select η1 and η2 which yields η1 = 2 × 10−5 and η2 = 3 × 10−5.

Empirical results from this first generated data experiment are sensible. The log of the Bayes factor

in favor of the smooth coefficient model is 221.79, indicating strong support for the smooth coefficient

model over the linear parametric model (which is far from the data generating process). In Figures

1 and 2 we present posterior means (which can be obtained analytically) of the two nonparametric

regression lines (solid) as well as the true relationships (dashed) that were used to generate the data.

It can be seen that the fitted nonparametric regression lines track the true lines quite well, despite the

fact that our data set is fairly small and we have included a fairly large random error component. To

see the latter, note that Figure 1 also plots the ”Data” defined as yi −wiE (θ|Data)−E (γ2i|Data) si.

Despite a large scattering of these ”data” points, the smooth coefficient model picks up the main

pattern very effectively.

We also generated a second cross-sectional data set that used (29) as the data generating process.

To be precise this second data generating process is exactly equal to our first one, except the terms

Ai cos(4πAi) and sin (2πAi) si are deleted. All other modeling details, including the prior, are as

described above. For the sake of brevity, we do not present detailed results from this data set. Suffice

it to note here that the log of the Bayes factor in favor of the smooth coefficient model over the

linear model given in (29) is −12.91, indicating support for the (true) linear model. It is also worth

mentioning that even in this case the smooth coefficient model does a good job of fitting the data.

That is, the empirical Bayesian methods select very small values for η1 and η2
16 and the resulting

fitted nonparametric lines are very close to simply being horizontal lines at zero (as they should be).

Of course, if one does have a parsimonious parametric model that is known to fit the data well, then

the use of nonparametric methods may be superfluous. However, it is reassuring to see that our

nonparametric methods work well in both designs, and our flexible methods have the advantage that

they are adaptable in applied situations where the design is unknown.

4 The Data

The data used in our empirical work are taken from the National Longitudinal Survey of Youth (NLSY).

The NLSY is a rich panel data set providing a wealth of information on the earnings experience,

educational histories, and family backgrounds of a sample of young men and women in the U.S.

As discussed throughout this paper, we are primarily interested in flexibly exploring the relationship

between measured cognitive ability and economic outcomes. Specifically, we investigate the rela-

16Because of problems associated with calculating |V β |
−1/2 at η1 = η2 = 0, we perform a grid search bounding the

elements of η1 and η2 slightly above zero. The linear model is considered as a separate specification. Empirical Bayes
methods seek to drive these hyperparameters toward zero in this experiment, as one might expect given the results of
our marginal likelihood calculations and the fact that the linear model is the “true” specification.
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tionship between ability and log wages in a smooth coefficient hierarchical (panel) model, and also

investigate how ability impacts the labor supply decisions of married white females in a smooth co-

efficient ordered probit model. Fortunately for this purpose, the NLSY reports scores on 10 tests

comprising the Armed Services Vocational Aptitude Battery (ASVAB), which is administered to the

NLSY participants in 1980 and serves as a reasonable instrument for cognitive ability. To reduce the

dimensionality of these ability measures and fix our attention on a scalar “ability” variable, we follow

Cawley, Conneely, Heckman and Vytlacil (1997) and purge the 10 test scores of a linear age effect and

then use the first principal component of the resulting ten vectors of (standardized) residuals as our

ability measure.17

Sample Restrictions in the Hierarchical Smooth Coefficient Model

For the hierarchical application we exploit the panel structure of the NLSY. The NLSY panel begins

in 1979 at which point the respondents range from 14 to 22 years of age. Information from annual

interviews are collected until 1994, and after 1994 we are able to obtain data from biannual surveys

until 2000.

The time-varying characteristics we include as determinants of log wages (zit) consist of quadratics in

total weeks of actual labor market experience (denoted EXP and EXP2) and tenure on the current

job (TENURE and TENURE2), an indicator for residence in an urban area (URBAN) and a time

trend (TREND). The actual weeks of labor market experience variable is constructed by aggregating

reported weeks of work between interview dates. The dependent variable employed in the analysis

is the log hourly wage. Our time-invariant characteristics consist of our ability measure (ABILITY),

highest grade completed by the respondent (EDUC), highest grade completed by the respondent’s

mother (MOMED) and father (DADED) and number of siblings (NUMSIBS).

In keeping with the majority of this literature, we restrict the sample used in our hierarchical analysis

to white males in the NLSY, and specifically, we focus only on those white males from the cross-

sectional samples. We exclude observations when the hourly wage (in real 2000 dollars) is less than $1

or greater than $50, when the respondent reports to be currently enrolled in high school or college in

the given year and when the quantity of schooling completed varies over time even after conditioning

on those not enrolled in school. We delete observations when the number of weeks worked since the

last interview is less than the reported increase in tenure with the given employer between interview

dates, and when parental or the individual’s own education is less than 9. We also require that each

individual is observed for at least five years throughout the sample period. This sample selection

procedure yields a total of 3, 980 observations from 359 individuals. Thus, on average, each individual

is observed for approximately ten years of the panel, and for some individuals, we have as many as

17Since students varied in age at the time the tests were administered, we regressed each test score on age and then
obtained and standardized the 10 residual vectors from these regressions. The eigenvector corresponding to the largest
eigenvalue of the residual correlation matrix serves as the weighting vector, and the ability measure we use is the product
of this weighting vector times the standardized residual scores. This resulting ability measure is then standardized to
have mean zero and unit variance for interpretation purposes. Finally, the 10 component tests of the ASVAB battery are
general science, arithmetic reasoning, word knowledge, paragraph comprehension, coding speed, numerical operations,
auto and shop information, mathematics knowledge, mechanical comprehension and electronics information.
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eighteen observations.

In order to deal with the potential endogeneity of schooling in the hierarchical model, we require an

instrument. This instrument must affect the quantity of schooling attained by the individual, but

not be correlated with the person-specific random effect given the other controls we employ. Our

choice in this regard is to use the quantity of schooling obtained by the respondent’s oldest sibling

(SIBED). Our argument for the use of this instrument is that sibling’s education should be strongly

correlated with one’s own education, as it proxies both familial preferences toward the importance

of education, and potentially, resources constraints faced by the family. However, siblings education

itself should play no structural role in the wage equation, conditioned on one’s own schooling and our

other controls for family background. This particular instrument choice imposes further restrictions

in our sample. Specifically, we now consider only those individuals in the NLSY with a sibling, and

also require that the oldest sibling be at least 24 years of age in 197918 so that he/she is likely to have

completed his/her schooling. This sample selection scheme produced a total of 1, 203 observations

from 98 individuals. Finally, we include ABILITY, MOMED, DADED, NUMSIBS and SIBED in the

reduced form schooling equation.

Sample Restrictions in the Smooth Coefficient Ordered Probit Model

To estimate the ordered probit model of section 2.3, we extract information on the labor supply

decisions of a cross-sectional sample of married white females in the NLSY. Specifically, we use our

ordered probit specification to model the decision made by a sample of women to remain out of the

labor force (y = 1), to work part time (y = 2) or to work full time (y = 3) in 2000. We extract data

on measured cognitive ability (ABILITY), education (ED), spousal income (SPINC), and number of

children (NUMKIDS) in the household and include these variables in our ordered probit specification.

Our smooth coefficient extension of this ordered probit model permits a flexible baseline function of

ability in the latent variable equation (f1 in (26)). Perhaps most importantly, our smooth coefficient

ordered probit also allows for a flexible interaction between spousal income and ability. Our prior

expectation is that when the income of the husband is small, women of all ability types will have a

large incentive to participate in full-time employment. Conversely, when the income of the husband is

large, then we will see more differentiation in female labor supply decisions. Specifically, high ability

women will work full time with significantly higher probability than lower ability women, and women

of all ability types will have a lower probability of full time employment when spousal income is high.

After restricting the sample to married white females from the cross-sectional sample with non-missing

information for the required variables, we obtain a final sample of N = 655 observations.

18The question is asked to the NLSY respondents in 1979, the base year of the survey.
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5 Empirical Results: Hierarchical Smooth Coefficient Model

In this section we turn to our first application and present empirical results using the NLSY data and

the model discussed in Section 2.2. The explanatory variables in the first (i.e. the elements of zit in

(16)) and second (i.e. the elements of wi following (17)) stages of the hierarchy are also discussed

in Section 4. We are particularly in interested in using the NLSY data to investigate the following

questions: (1) What is the relationship between expected log wages and our measure of cognitive

ability? (2) Do returns to schooling vary with ability? and (3) Are standard parametric models

adequate for describing these relationships in the NLSY data?19

5.1 Hierarchical Model without Endogeneity

To fix ideas we first consider the case of a hierarchical model with no endogeneity problems and thus

impose σuv = 020 in the model of Section 2.2. Under this assumption we no longer require an instru-

ment in the schooling equation and thus do not need to restrict our attention to only those individuals

with older siblings in the NLSY. This provides us with more observations to explore the relationship

between ability and log wages and to determine how returns to education vary with measured cognitive

ability. Finally, under the assumption of exogenous schooling, our model is described by (16) and (17)

and the reduced form schooling equation in (18) does not need to be specified.

To investigate the adequacy of often-used parametric models in this literature (which often argue

that potential endogeneity problems can be ignored upon including a rich set of covariates in the wage

equation), we calculate the Bayes factor comparing the smooth coefficient model to a parametric model

where all explanatory variables enter linearly. That is, the first and second stages of the hierarchy for

the parametric model are given by (16) and (17) but the mean in the second stage is now assumed to

be linear in A and S:21

µi = wiθ + λ0 + λ1Ai + λ2si. (30)

Our general prior elicitation strategy remains the same as that described in section 2.1. That is, we

use empirical Bayesian methods to elicit the smoothness prior for the nonparametric regression lines,

we select proper but relatively noninformative priors for parameters which are present in one model

but not the other and we choose noninformative (or virtually noninformative) priors for all parameters

which are common to all models. Accordingly, using the notation of (19) - (23) we set δ = 0, V −1
δ = 0,

νε = 0 (and with this value, s−2
ε is irrelevant), s−2

α = 1 and να = .01 for both models. The structure of

β and V β for the parametric and nonparametric models is exactly as in the cross-sectional empirical

illustration (see Section 3).

19Given our focus on the hierarchical smooth coefficient model and its potential applicability, we do not address the
issue of time-varying returns to ability and/or education over this period. See Blackburn and Neumark (1993), Heckman
and Vytlacil (2001) and Taber (2001) for more on this particular issue.

20This assumption is relaxed in the following section.
21An alternative specification would include an interaction between Ai and si. We do not include this specification

since it receives little support from the data. However, it is worth stressing that this and other similar extensions are
trivial to handle in our framework.
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Table 1: Posterior Results for First and Second Stage Parameters:
Hierarchical Model Without Endogeneity

Smooth Coefficient Model Parametric Model

Variable/ Post. Post. Post. Post.
Parameter Mean St. Dev. Mean St. Dev.

EXP 1.24 × 10−3 1.30 × 10−4 1.26 × 10−3 1.30 × 10−4

EXP2 −4.12 × 10−7 6.72 × 10−8 −4.14 × 10−7 6.81 × 10−8

First TENURE 6.67 × 10−4 8.15 × 10−5 6.70 × 10−4 8.04 × 10−5

Stage TENURE2 −6.82 × 10−7 1.03 × 10−7 −6.87 × 10−7 1.02 × 10−7

URBAN 0.079 0.017 0.077 0.017
TREND −6.68 × 10−3 4.68 × 10−3 −7.52 × 10−3 4.66 × 10−3

σ2
ε 0.090 0.003 0.090 0.003

MOMED −7.17 × 10−3 1.17 × 10−2 −6.11 × 10−3 1.17 × 10−2

DADED 0.021 0.009 0.022 0.009
Second NUMSIBS 0.020 0.010 0.020 0.010
Stage INTERCEPT −− −− 0.904 0.155

ABILITY −− −− 0.041 0.020
EDUC −− −− 0.064 8.73 × 10−3

σ2
α 0.101 0.008 0.103 0.009

Posterior results are produced using the MCMC algorithm described in the appendix.22 A two di-

mensional grid search over values for η1 and η2 indicates support for small values of the smoothing

parameters, and specifically, our empirical Bayesian strategy yields η1 = η2 = 10−12 as the optimal

choice. This indicates that the nonparametric regression lines f1 and f2 are very smooth and can

be taken as informal evidence that a linear model is supported by the data. A more formal test in

this regard is provided by the Bayes factor comparing the smooth coefficient model to the parametric

model with the mean of the second stage of the hierarchy given by (30). The log of this Bayes factor is

−948.6, indicating strong evidence in favor of the parametric model. The reason for this is clear. With

very small values of η1 and η2 the two models fit the data roughly equally.23 However, Bayes factors

also have a reward for parsimony built in, and this strongly favors the more parsimonious parametric

model (note that the smooth coefficient model has almost 2N more coefficients than the parametric

model). This is a general property of our approach and, we feel, a sensible one. Nonparametric mod-

els are non-parsimonious, so receive little support unless the parametric alternative fits the data very

poorly.

To show the similarity between smooth coefficient results and those from a linear model, Table 1

presents coefficient posterior means and standard deviations from the smooth coefficient and paramet-

ric models. For all parameters which are common to both models, it can be seen that the posteriors are

virtually identical to one another. In Figures 3 and 4 we present evidence relating to the parameters

which are not common to both models and plot estimates of f1(A) and f2(A) from the smooth coeffi-

cient model. Figure 3 plots the posterior mean of f1(A) (solid) and E(f1(A)|Data)±2Std(f1(A)|Data)

22We run all MCMC algorithms for 11, 000 replications and discard the initial 1, 000 as burn-in replications. Our
results pass standard convergence diagnostics.

23As evidence of this, we used the simulated posterior output from each model to calculate the log likelihoods at each
iteration of the sampler. The maxima of these log likelihoods were equal to one decimal place.
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(dashed), while Figure 4 similarly plots the posterior mean and posterior standard error bands asso-

ciated with f2.

These figures again reveal that the nonparametric and linear models are basically telling the same

story. We see some slight nonlinearities in Figure 3, though Figure 3 is not far different from a

linear model and results obtained from the linear specification fall comfortably within the plotted

standard error bands. From Table 1, the parametric model says that an added year of schooling

increases hourly wages by about 6.5 percent with the ±2 Std. interval given by [0.049, 0.081]. By

construction, the parametric model imposes the same returns to schooling on individuals with different

level of ability. Though our flexible smooth coefficient model has the potential of allowing returns

to schooling to vary across individuals of differing ability, it estimates the return to education as

being roughly constant across individuals of varying ability.24 The smooth coefficient model yields

a slightly lower point estimate (roughly six percent), but relative to the size of posterior standard

deviations, this difference is negligible. The posterior standard deviations for returns to schooling

in the smooth coefficient model are also slightly larger than in the parametric model, which is to

be expected given our agnostic stance regarding the specification of the model. Despite these small

differences, the parametric and nonparametric models yield roughly the same posterior inferences for

returns to schooling and measured cognitive ability.

5.2 Longitudinal Model with Endogeneity

The longitudinal model with endogeneity is given in (16) through (18). The reduced form schooling

equation (18) is now added to the analysis. This equation includes an intercept, MOMED, DADED,

NUMSIBS, ABILITY and SIBED as explanatory variables, where sibling’s education (SIBED) is the

instrument used to identify the model. As in the previous section, we carry along a fully parametric

specification and compare results from that specification to those obtained from our smooth coefficient

analysis. The first two equations of this parametric model are the same as were used previously in

the model without endogeneity. The third equation, (18), is the same in the parametric and smooth

coefficient models.

For parameters that are common to both the models in this and the previous section, we retain the

same prior specifications that were used in the previous section. We use a noninformative prior for

the coefficients in reduced form schooling equation (i.e.,. we set V −1
π = 0 and, with this value, π is

irrelevant). For the prior in (21) we use relatively noninformative values25 of ρ = 9 and A = I2.

24In a related analysis that did not make use of the nonparametric techniques described here and required time-varying
schooling, Koop and Tobias (2002) found little evidence that measured ability played a significant role in explaining
variation in returns to schooling across individuals.

25The value for ρ is the smallest which guarantees that prior means, variances and covariances exist. See Poirier (1995),
page 138 for related discussion.
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Table 2: Posterior Results for First and Second Stage Parameters: Model with Endogeneity
Smooth Coefficient Model Parametric Model

Variable/ Post. Post. Post. Post.
Parameter Mean St. Dev. Mean St. Dev.

EXP 1.91 × 10−3 2.94 × 10−4 1.84 × 10−3 2.92 × 10−4

EXP2 −1.11 × 10−7 1.71 × 10−7 −1.07 × 10−6 1.74 × 10−7

First TENURE 7.39 × 10−4 1.70 × 10−4 7.64 × 10−4 1.71 × 10−4

Stage TENURE2 −8.67 × 10−7 2.24 × 10−7 −8.68 × 10−7 2.28 × 10−7

URBAN 0.280 0.049 0.274 0.050
TREND 6.71 × 10−3 1.13 × 10−2 6.97 × 10−3 1.14 × 10−3

σ2

ε
0.126 0.014 0.127 0.014

First Equation (Individual effect is dependent variable)
MOMED −0.017 0.029 −0.012 0.029
DADED 0.019 0.025 −4.35 × 10−3 0.024
NUMSIBS −0.028 0.026 −0.025 0.026
INTERCEPT −− −− 1.014 0.439
ABILITY −− −− −9.22 × 10−3 0.045

Second EDUC −− −− 0.062 0.028
Stage Second Equation (Schooling is dependent variable)

INTERCEPT 6.404 0.392 6.458 0.396
MOMED 0.029 0.031 0.048 0.030
DADED 0.337 0.028 0.317 0.025
NUMSIBS −0.075 0.030 −0.056 0.027
ABILITY 0.273 0.049 0.245 0.049
SIBED 0.179 0.021 0.170 0.020
ρuv −0.237 0.398 −0.163 0.489

We again find little support for the flexibility afforded by the smooth coefficient model for this ap-

plication, since empirical Bayesian estimation selects very small values for the smoothing parameters,

η1 = η2 = 10−12. Like the previous section, this result suggests that our semiparametric estimates

will be sufficiently smooth so that simpler parametric models will do an adequate job at reproducing

the shapes of the regression curves.

For parameters which are common to both models, we again find that results obtained from the

parametric and smooth coefficient models are strikingly similar. The posterior mean (and standard

deviation) of the correlation between the errors in two second stage equations (i.e. the source of the

endogeneity problem) was found to be −.24 (.40) in the smooth coefficient model and −.16 (.49) in

the parametric model. This suggests that with this relatively small sample size26 we are not able

to pin down this key correlation parameter, and thus learn little regarding the empirical importance

of endogeneity. Finally, it is also worth mentioning that the coefficient on our instrument SIBED is

reasonably large in magnitude and clearly “significant” in both the parametric and smooth coefficient

models, suggesting it plays an important role in determining the quantity of schooling attained and

serves as an adequate instrument.

For those quantities which are not common to both specifications (namely the specification of ability

and the ability-education interaction), we found no convincing evidence of nonlinearities.27 This again

suggests that standard parametric models - which are the workhorses of this literature - appear to

26Recall that we have only 98 individuals to estimate the bivariate relationship in (17) and (18).
27These results are not reported here, but are available upon request.
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be adequate for analysis of these issues using the NLSY data. This result both strengthens the

conclusions of previous studies which have been based on simpler specifications and also suggests that

simpler models are adequate for future work addressing similar topics using the NLSY. We do not

view this preference for the simpler model as problematic in any way, but instead are pleased with the

fact that our smooth coefficient analysis successfully recreates the findings of a well-fitting parametric

model without requiring the assumption of a particular parametric form.

6 Empirical Results: An Ordered Probit Model of Female Labor
Supply

We now turn to our second application involving the NLSY data and model the labor supply decisions

of a sample of married white females in 2000. Specifically, we model their decision to remain out of

the labor force, to work part time or to work full time in the given year. We estimate our three-choice

ordered probit model using the Gibbs sampling algorithm described in the appendix.

In this application we pay particular attention to how changes in spousal income affect changes in our

three employment states for women of varying ability. Our smooth coefficient ordered probit model

in (26) permits a flexible interaction between ability and spousal income and thus is well-suited for

this investigation. As a competing specification we also consider the performance of a fully parametric

model that is linear in all the explanatory variables.

Using our empirical Bayesian methods, we settle on η1 = 1.0 × 10−7 and η2 = 1.0 × 10−11 as optimal

values of the smoothing parameters. We present in Table 3 below estimation results for the parametric

portion of the model using this value of η1 and η2.

Table 3: Posterior Means and Standard
Deviations on Parametric Coefficients

in Ordered Probit Model

Variable Post Mean Post Std.

Num-Kids -.23 .044
Education .033 .027
Unemp-rate .035 .033
Cutpoint (α2) .032 .045

As can be seen from Table 3 (and as one certainly might expect), the number of children in the

household plays a strong role in the model, with more children in the home clearly decreasing the

probability that a woman works full time and increasing the probability that she remains out of the

labor force.

To investigate how changes in spousal income impact labor supply decisions across the ability distri-

bution, we calculate the probabilities of each employment state over the ability support. Specifically,
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we compute

Pr(y = j|s, w, A = A0, α, γ, θ) = Φ (αj − wθ − f1(A0) − f2(A0)s)−Φ (αj−1 − wθ − f1(A0) − f2(A0)s) ,

where A0 is a particular point in the ability distribution. We set the variables in w equal to their

sample means and evaluate these probabilities at various values of spousal income, s. We calculate

these probabilities for each employment state (j = 1, 2, 3) and for each observed ability value Ai in the

sample. The draws obtained from the posterior distribution of α, γ and θ, are then used to obtain a

point estimate of the desired probability at each ability value. Finally, we also calculate these effects

for the competing parametric (linear) specification and compare these estimates to those obtained

from the smooth coefficient model.

Results of this exercise are presented in Figures 5 and 6. In these figures we plot results for both the

smooth coefficient and parametric models when spousal income is set at $120,000 (approximately the

95th percentile of the spousal income distribution), and thus investigate the impact of ability on female

labor supply decisions for those with high levels of family income. As one can see, the figures suggest

important differences between the smooth coefficient and linear models. First, the smooth coefficient

model suggests that very low ability women are more likely to stay out of the labor force than to work

full time at this high level of spousal income. In contrast, the parametric model predicts that the

probability of full time work exceeds the probability of no work at all values of the ability distribution.

Second, both models suggest that the probability of full time (no) work is increasing (decreasing)

with ability, but the slopes of these changes differ considerably across specifications. Specifically, our

smooth coefficient model shows a sharp increase in the probability of full time employment for ability

values greater than one standard deviation above the mean and a corresponding sharp decrease in the

probability of no work over this region. The fully parametric model can not account for these features

of the data and simply predicts a nearly linear trend through the ability support.

At the other end of the spousal income distribution, results were very similar across model specifica-

tions. When spousal income is $10,000 (approximately the 4th percentile of the income distribution),

for example, both the smooth coefficient and linear models predict a high probability of full-time

employment and a low probability of remaining out of the labor force regardless of ability level.28

Taken together, these results show there is little evidence of or role for baseline nonlinearities in abil-

ity (through f1), but there is an important ability- spousal income interaction (through f2). When

evaluating these probabilities at low levels of spousal income, the contribution of the interaction term

is minimal and predictions are found to be similar across the smooth coefficient and parametric models.

However, for larger values of spousal income (s), the important role of the ability-income interaction

becomes clear. Finally, the log of the Bayes factor in favor of the smooth coefficient model over

the parametric alternative was found to be 3.82, indicating preference for the more general smooth

coefficient specification despite its added parameterization.

28We do not present a full set of results for the sake of brevity. Estimates of f1, f2 and probabilities of each state with
s = 10, 000 are available upon request.
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7 Conclusion

In this paper we have described Bayesian procedures for estimation and testing in cross sectional,

longitudinal data and nonlinear smooth coefficient models. In the cross sectional model, estimation,

testing and smoothing parameter selection can be carried out analytically, thus making analysis of

the smooth coefficient model a simple yet flexible option for practitioners. In the hierarchical smooth

coefficient model and nonlinear models that can regarded as linear latent variable models, estimation

only requires iterative simulation from standard distributions.

We illustrated the flexibility and practicality of our methods in generated data experiments and in

applications using data from the National Longitudinal Survey of Youth (NLSY). Using the NLSY

we investigated the issue of nonlinearities in the relationship between log wages and measured cogni-

tive ability and also flexibly modeled the dependence of returns to education on this ability measure.

Our results suggested that returns to education were roughly constant throughout the ability support

and that simpler (and often used) parametric specifications provide an adequate description of these

relationships. In an ordered probit model of female labor supply, we preferred our flexible smooth co-

efficient model over a linear parametric alternative and found that in some cases, predictions regarding

quantities of interest were quite different across models. These results are of substantive interest and

also illustrate how our approach to the estimation of smooth coefficient models can be applied in a

variety of settings.
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7.1 Appendix A: Posterior Simulator for Longitudinal Model with Endogeneity

The model is given as:

yit = αi + zitδ + εit (31)

αi = wiθ + f1(Ai) + sif2(Ai) + ui (32)

si = riπ + vi, (33)

where again, we let

µi = wiθ + f1(Ai) + sif2(Ai) = xiβ,

as described in section 2.1.

By Bayes Theorem, the joint posterior distribution is proportional to the product of the prior times

the likelihood:

p(α, δ, β, π, σ−2
ε , Σ−1|y, s) ∝ p(y, s|α, δ, β, π, σ2

ε , Σ
−1)p(α, δ, β, π, σ−2

ε , Σ−1). (34)

the likelihood function is the joint density of y and the endogenous schooling variable s conditioned

on the model parameters. The prior assumptions in (19)-(23) imply:

p(α, δ, β, π, σ−2
ε ,Σ−1) = p(α|β, π,Σ−1)p(δ)p(β)p(π)p(σ−2

ε )p(Σ−1)

=

[
N∏

i=1

p(αi|β, π,Σ−1)

]
p(δ)p(β)p(π)p(σ−2

ε )p(Σ−1),

where the last line follows from the assumed conditional independence across observations. The density

p(αi|β, π,Σ−1) can be obtained by substituting out si from (17) using the reduced form equation in

(18).

As for the likelihood function, first let Γ denote all the parameters in the model and note

p(y, s|Γ) =
N∏

i=1

p(yi1, · · · , yiTi , si|Γ) (35)

=
N∏

i=1

(
Ti∏

t=1

p(yit|αi, δ, σ
−2
ε )

)
p(si|αi, π,Σ−1, β), (36)

where the first line follows by the assumed independence across individuals, and the last equation

follows by noting that the density for yit does not depend on si given αi and that yit is assumed to be

independent over time given αi. When appropriate, we have also dropped irrelevant parameters from

the conditioning.

Combining the likelihood in (36) with our prior we obtain the unnormalized joint posterior

p(Γ|y, s) ∝

[
N∏

i=1

(
Ti∏

t=1

p(yit|αi, δ, σ
2
ε)

)
p(si, αi|π, Σ−1, β)

]
p(δ)p(β)p(π)p(σ2

ε)p(Σ−1). (37)
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To carry out posterior simulation in this model we employ a blocking step to sample first from the con-

ditional for δ marginalized over the random effects, and then to sample from the complete conditionals

for the random effects. We obtain:

δ|Data,Γ−α,δ ∼ N(Dδdδ, Dδ), (38)

where

Dδ =

(
∑

i

Z ′

iΩ
−1
i Zi + V −1

δ

)
−1

,

dδ =
∑

i

Z ′

iΩ
−1
i

(
yi − ιTi

[
µi +

σuv

σ2
v

(si − riπ)

])
+ V −1

δ δ

and

Ωi = σ2
u(1 − ρ2

uv)ιTiι
′

Ti
+ σ2

εITi .

We also obtain the complete conditional for the random effects:

αi|Γ−αi ,Data
ind
∼ N (DαidαiDαi) , i = 1, 2, · · ·N, (39)

where

Dαi =
[
Ti/σ2

ε + σ−2
u (1 − ρ2

uv)
−1

]
−1

and

dαi =

[
∑

y

(yit − zitδ)/σ2
ε

]
+ σ−2

u (1 − ρ2
uv)

−1

(
µi +

σuv

σ2
v

(si − riπ)

)
.

In these equations, ιx denotes an x × 1 vector of ones, Zi and yi have been stacked over t within i

conformably, ρuv denotes the correlation between u and v, and xi and β are defined as in section 2.1.

These conditionals are derived from (37) after factoring the distribution for (si αi) into the conditional

for αi given si times the marginal for si and applying the result of Lindley and Smith (1972).

We obtain the following posterior conditional for σ−2
ε :

σ−2
ε |Data, α, δ ∼ G

(
s−2
ε , νε

)
(40)

where

νε =
∑

i

Ti + νε,

s2
ε =

∑
i(yi − αi − Ziδ)

′(yi − αi − Ziδ) + νεs
2
ε

νε
.

As for the complete conditionals for the second-stage regression parameters and inverse covariance

matrix, let us first stack the triangular system in (32) and (33) together and introduce some new

notation. We stack the time-invariant components together as follows:
[

α
s

]
=

[
X 0
0 R

] [
β
π

]
+

[
u
v

]
,

or equivalently

α̃ = X̃β̃ + ũ,
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where α̃ = [α′ S′]′, β̃ = [β′ π′]′, ũ = [u′ v′]′ and X̃ is defined as the blocked diagonal design matrix

with X and R on the diagonals. We also note that E(ũũ|X̃) = Σ ⊗ In. Given this, it follows that

β̃|Γ
−β̃ ,Data ∼ N

(
Dβ̃dβ̃ , Dβ̃

)
, (41)

where

Dβ̃ =
(
X̃ ′(Σ−1 ⊗ IN )X̃ + Ṽ

−1

β̃

)
−1

,

dβ̃ = X̃ ′(Σ−1 ⊗ IN )α̃ + Ṽ
−1

β̃ β̃,

Ṽ β̃ =

[
V β 0

0 V π

]
and β̃ =

[
β

π

]
.

Finally, consider the complete posterior conditional for Σ−1 and let

ψi = ψi(αi, β, π) =

[
αi − µi

si − riπ

]
=

[
ui

vi

]
.

Thus, conditioned on β and π, the second stage errors are effectively “known.” Given this, we obtain

the following posterior conditional

Σ−1|Γ
−Σ−1 , Data ∼ W




(
N∑

i=1

ψiψ
′

i + ρA

)−1

, ρ + N


 . (42)

Posterior analysis can be performed by sequentially drawing from (38), (39), (40), (41) and (42).

7.2 Appendix B: Posterior Simulator for the Ordered Probit Model

From the joint posterior in the ordered probit model given in (26), the following complete conditionals

are obtained:

β∗|z∗, δ2, y ∼ N(Dβdβ , Dβ)

where

Dβ = δ2
(
X ′X + V −1

β

)
−1

, dβ = X ′z∗/δ2.

As for the conditional for the latent data,

z∗i |β
∗, δ2, y

ind
∼ TN[α∗

yi−1
,α∗

yi
)(xiβ

∗, δ2),

where TN(a,b)(µ, σ2) denotes a Normal density with mean µ and variance σ2 truncated to the interval

(a, b). Finally,

δ2|β∗, Z∗, y ∼ IG

(
N+k + 1

2
,

[
1

2
(z∗ − Xβ∗)′(z∗ − Xβ∗) +

1

2
β∗′V −1

β β∗

]
−1

)
,

where IG denotes the inverted Gamma distribution (see Poirier (1995), p. 111). To recover the

original coefficient vector β and cutpoint α2, simply use the inverse transformations β = (1/δ)β∗ and

α2 = (1/δ). It is also with noting that the computationally expensive term (X ′X + V −1
β )−1 in Dβ can

be calculated outside the Gibbs loop for given η1 and η2.
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Figure 1: Fitted and True Regression lines for f1(A) = A cos(4πA).
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Figure 2: Fitted and True Regression Lines for Smooth Coefficient Term f2(A) = sin(2πA).
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Figure 3: Fitted Regression Line for Ability Term f1(A) in Hierarchical Model
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Figure 4: Fitted Regression Line for Return to Schooling Term f2(A) in Hierarchical Model.
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Figure 5: Probabilities of Each Employment State Across Ability Levels: Spousal Income = 120K,
Smooth Coefficient Model
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Figure 6: Probabilities of Each Employment State Across Ability Levels: Spousal Income = 120K,
Parametric Model
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