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Abstract: In this paper we compare the effect of the
parameterisation on the automatic detection of diseases
based on biomedical data. Exemplarily, we study the
analysis of event related brain potentials in patients suf-
fering from panic disorder, whereby the data comprises
responses to neutral and panic causing stimuli. This
data is parameterised by time-frequency (TF) transforms,
from which features are selected by a statistical test. The
selected features represent the input to a support vector
machine classifier yielding a detection rate for the TF
parametrised data. This is compared with detection rates
obtained for unparameterised time domain data.
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INTRODUCTION

In medical facilities it is a common issue to judge the re-
sponses of patients to stimuli in order to determine a po-
tential physiological or psychological illness [1, 2]. In
cases where the response can be measured as an elec-
trical signal, the signal evaluation used to be primarily
based on an expert’s decision regarding the waveforms of
averaged signals. Such waveforms and often parameters
derived from these as presented by standard clinical mea-
surement devices were treated as additional information
only. Recently, however, automated evaluation methods
based on signal processing approaches have more and
more frequently enhanced or even replaced the expert’s
judgement [1, 3]. As a result, many different propositions
were made concerning statistical signal evaluation in an
effort to enhance or perhaps even replace the decision of
a human expert.

Here, we contribute to evaluate the separation of
biomedical data to detect potential illnesses by firstly
showing the application of TF methods and statistical
tests to select features as introduced in [3]. Then, the
selected features are used as an input to a support vector
machine classifier which returns a trained support vector
classification network. Using this network, a detection
rate for a test data group is received. This method, as out-
lined in Fig. 1 is applied to panic disorder data collected
from one patient. We are especially interested in investi-
gating the influence of the parameterisation and therefore,
we compare the detection results received for the selected
features based on the TF parameterisations and unparam-
eterised time domain data. As the amount of panic dis-
order data is limited, the TF transforms as well as the
statistical tests are applied to all available data, before it

is split into training and test data sets, as illustrated in
Fig. 1 to ensure a robust parameterisation. However, as
the main purpose of this contribution is to evaluate the pa-
rameterisation, the drawback compared to a study where
the parameterisation is based on a training data set only
can be accepted.

The paper is organised as follows. Firstly, we will
introduce the TF transforms for the parameterisation of
the data. Then, a method to isolate indicative parameters,
which can be used for distinguishing is discussed. Next,
we describe the support vector machine classifier which
gives a detection rate for the test data based on a network
resulting from the training data. The test and training data
are received by splitting the data used for identifying dis-
tinctive coefficients. The paper closes with test results
and conclusions for the application to panic disorder and
acknowledgements.

TRANSFORMATION METHODS

In the following, we discuss transform methods to para-
metrise biomedical data with the aim of expressing its
features by as few coefficients as possible.

To take the transient nature of biomedical waveforms
into account, TF transforms are used for parameterisa-
tion of the data. For our application to panic disorder, TF
transforms with a good time resolution are required [3].
The discrete wavelet transform (DWT) however gener-
ally yields a good frequency resolution and poor time res-
olution at low frequencies, resulting in a too coarse time
segmentation in the frequency range of interest. There-
fore, we concentrate on wavelet packet (WP) transform,
whose level of decomposition can be adapted to fit the na-
ture of the data, as well as the Gabor Frame (GF) decom-
position, which yields a uniform tiling of the TF plane
and hence can provide a desired resolution in a specific
TF segment.

For the transforms considered, we choose a matrix no-
tation

y = Tj · x , (1)

where x represents one discrete and finite measurement
in the time domain with N elements, y is vector holding
the transformation coefficients and j = {WP, GF} the
potential transform method. While fast implementations
of WP [4] and GF [5] avoid matrix implementations, the
calculation of a limited number of significant elements
in y can be performed faster by extracting the according
rows from Tj. As the data in x is finite, a symmetric
extension (extension by reflection) of the data is incorpo-
rated into Tj according to [6].



Feature
selection
using 

tests
statistical

Data to be separated trained support
support vector
machine

and anxiety

classifying
neutral

data

by training data
network found

Test data

Detection
rate yielded by

vector machine

Feature
selection
using 

tests
statistical

TF transforms,
adjusted and
adapted to 
the data

Data to be separated trained support
support vector
machine

and anxiety

classifying
neutral

data

by training data
network found

Test data

Detection
rate yielded by

vector machine

Training data

Training data

classification 
Support vector

Support vector
classification 

Training a

Training a

Fig. 1: Overview: Detection comparison study for (top) parameterised data and (bottom) time domain data.

Discrete Wavelet and Wavelet Packet Transformation

The WP is based on a discrete wavelet transformation
(DWT) which is a fixed transform based on a “mother
wavelet” from which the transformation coefficients are
derived by scaling, translation and sampling. To comply
with the symmetric extension in Tj, the mother wavelet
must be symmetric. Here, we have chosen the Mallat
wavelet [4] for which good results have been reported
in similar studies [1]. We firstly review the DWT very
briefly to lay the foundation for the description of the WP.

The DWT transform with a matrix TDWT ∈ R
K×N

results in the vector y[k] ∈ RK

y =
[

y[0] y[1] · · · y[K − 1]
]T

(2)

containing the DWT coefficients y[k], k = 0(1)K − 1
of the vector x with K = N . Each coefficient approxi-
mately covers a TF tile in Fig. 2a).

The WP transform is an adaptive transformation simi-
lar to the DWT but with a different partitioning of the TF
plane. The advantage of this approach compared to the
DWT is that the entropy of y shall be minimised through
variable levels of decomposition such that the energy is
concentrated in as few coefficients as possible. One suit-
able measure for such a concentration is given by the
Shannon entropy

ε(y) = −

K−1
∑

k=0

ln(‖ y ‖2)· ‖ y ‖2 , (3)

where ln is the natural logarithm and ‖ y ‖ the Euclidean
vector norm of y. The adaptive transformation approach
is implemented in the following way: The measure in
(3) is calculated for every wavelet decomposition level
and if the entropy is decreased from one decomposition
to the next, the decomposition will be continued. If the

entropy from one decomposition level to the next does
not decrease, the decomposition will be stopped.

Fig. 2 shows a sample DWT and WP decomposition,
whereby the DWT can be considered as a special case
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Fig. 2: Time-frequency tiling comparison between a) a
DWT and b) a sample WP decomposition

of the WP transformation where the TF plane is seg-
mented dyadically form one level to the next. The matrix
TWP ∈ RK×N is found as follows: For each measure-
ment vector x to be transformed, the WP decomposition
is calculated. Then, the decomposition that shows the
minimum entropy averaged over all measurements is se-
lected among the decompositions for each measurement
as the optimal WP decomposition. The difference be-
tween the wavelet matrix TDWT and the wavelet packet
matrix TWP lies in the change of some rows. For the
example in Fig. 2, the rows that contain the level 2 coef-
ficients in TDWT are replaced by level 3 coefficients in
TWP.



Gabor Frames

The GF are the second transform method applied to the
data. This transform is fixed and its main difference
compared to the WP is that the GF parametrisation is
overcomplete and yields complex valued transform co-
efficients. We can also choose from various prototype
functions to find the best one matching our analysis. The
transform implemented here is an oversampled gener-
alised DFT filter bank according to [5]. The GF trans-
form can be regarded as a short time Fourier transform
with more restrictions for the translated window, which
is the prototype filter for the GF. Fig. 3 shows a sample
time frequency tiling, which is characterised by the uni-
form resolution of the GF. Gabor functions are derived
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from a prototype function h[n] by modulation, usually

hm[n] = h[n] · ejΩmn, (4)

and give a decomposition according to

ym[k] =
∑

n

x[k · D − n] · hm[n], (5)

where D is the decimation factor.
As an example for a GF via an oversampled gener-

alised DFT filter bank [5] let us assume a filter length
of W = 448 for the prototype function, a frequency
segmentation of S = 32 uniform scales, a decimation
D = 28 and length of the vector x of N = 224. This
setting yields a transform matrix TGF ∈ CK×N with
K = (N/D + 1) · S/2, K = ( 224

28 + 1) · 32
2 = 144.

Similar to a DFT, this type of transform yields a symme-
try in the transform parameters for real valued input data.
Hence, in general only half of the coefficients need to
be retained, as the remainder is complex conjugated only
and therefore redundant which is represented by the term
S/2 in the formula above. Filters with varying length,
frequency and time segmentations are used to determine
a matrix TGF that optimises the parametrisation of the
data. Apart from the restrictions that N needs to be an
integer multiple of D and W/K needs to be an even inte-
ger, there are no other constraints in terms of the length of
the signal to be analysed and the length of the analysing
filter. This can be regarded as advantageous.

DIFFERENCE EVALUATION

Based on the various parameterisations derived in the pre-
vious section, we will identify a set of coefficients that
allows us to differentiate between the presented neutral
and anxiety words.

F -Test

Prior to the selection of significant coefficients that repre-
sent the main characteristics of the data, an F -test [7] is
conducted to determine which method is used to identify
them. The aim of this test is to determine whether two
data sets are sampled from normal distributions with the
same variances. If a value for the significance level P of
lower than 0.05 is obtained by the F -test, we conclude
that the hypothesis is rejected and the two data sets are
sampled from normal distributions having different vari-
ances. The value of P = 0.05 is a limit commonly used
in medical research [7]. When the sets x1 and x2 con-
tain the series for one transformed coefficient k for all
measurements taken for data set 1 representing the num-
ber of presented neutral words and data set 2 representing
the number of presented anxiety words, they can be com-
pared by the F -value, which is given by [7]

F =
σ2

1

σ2
2

, (6)

with σ2
1 and σ2

2 being the variances of the two data sets.
To receive the significance level P for the F -test, we need
to define the degrees of freedom for the two data sets ac-
cording to

ν1 = L1 − 1 and

ν2 = L2 − 1, (7)

with L1 and L2 being the number of samples, ν1 the de-
grees of freedom for the data set 1 and ν2 the degrees of
freedom for the data set 2. With the F value defined by
(6) and the degrees of freedom ν1 and ν2, the significance
level P for the F -test can be determined from lookup ta-
bles in literature, e.g. [7]. The tabulated values of F are
all greater than 1, the two data sets in (6) need to be la-
belled such that σ2

1 ≥ σ2
2 . If the outcome of the F -test

confirms that the two data sets are sampled from distribu-
tions with equal variances, we can subsequently conduct
a t-test to determine distinctive coefficients. If the re-
sult of the F -test is that the underlying distributions from
which the two data groups are sampled possess different
variances we conduct a ut-test. The t-test and the ut-test
are defined in the next subsection.

t- and ut-Tests

The t-test gives the probability that two data sets sampled
from potentially two different distributions with identical
variance possess different mean values, for which a sig-



nificance is returned. The t-value is defined as [7]

t =
x1 − x2

√

σ2

1

L1

+
σ2

2

L2

=
x1 − x2

σ
√

1
L1

+ 1
L2

, (8)

with σ2 = σ2
1 = σ2

2 . The values x1 and x2 represent the
means for the two data sets, according to

xi =
1

Li
·

Li−1
∑

l=0

xi[n], i ∈ {1, 2}, (9)

with xT
i = [xi[0] xi[1] ... xi[Li − 1]].

The t-value also corresponds to a certain significance
level P , which can be looked up from tables [7], with
the degrees of freedom defined by νt = ν1 + ν2 =
L1 + L2 − 2. A smaller value for P indicates that the
data sets have a significantly different mean. For exam-
ple, for P = 0.01 the probability that the differences in
the means are due to a sampling error is 1%. To iden-
tify distinctive coefficients for our study, the determina-
tion of the applied significance level will be discussed in
the next subsection. The two tested distributions for our
study were the distributions for a specific transform pa-
rameter over the two data sets.

For the case that the F -test yields a difference in vari-
ances such that the t-test cannot be used, we apply a ut-
test for unequal variances defined as

ut =
x1 − x2

√

σ2

1

L1

+
σ2

2

L2

. (10)

According to [7], for data sets sampled from distributions
with unequal variances, the t distribution can be approx-
imated by the ut value if the t table is entered at the fol-
lowing defined degree of freedom:

νut =
(σ2

1/L1 + σ2
2/L2)

2

(σ2

1
/L1)2

L1−1 +
(σ2

2
/L2)2

L2−1

. (11)

This test tends to be less powerful than the usual t-test,
since it uses fewer assumptions [7]. However, for our ap-
plication to panic disorder data, all identified distinctive
coefficients have been isolated by the t-test. The main
purpose of the ut-test is to have an analysis tool for all
coefficients at hand whether they show equal variances
or not.

To determine a significance level P , the relation of
the t-test to the receiver operating characteristic (ROC)
analysis is shown in the next subsection.

Relation Between ROC Analysis and t-Test

We firstly describe the receiver operating characteristic
(ROC) analysis and then introduce the connection be-
tween ROC curves and the t-test and how we used the
ROC analysis for our system.

A good measure for differentiation between two dis-
tributions are ROC curves [8], since the area under the
ROC curve measures the separability independent of the

selection of any threshold. Therefore, they have become
remarkably useful in medical decision-making [8].

Firstly, we start by introducing the terms sensitivity
and specificity [8] as we refer to these terms later when
showing the results of our study. We assume we a have
population consisting of healthy controls and patients that
suffer from a certain disease but do not know or cannot
express their suffering (e.g. hearing loss in infants). Our
goal is to determine the patient group out of the popula-
tion. For this, we run an imaginary test on the popula-
tion. The outcome of the test consists of one test parame-
ter which is either positive indicating the tested person is
sick or negative meaning the tested person is healthy. In
order to evaluate the performance of that test, the follow-
ing values can be used, as illustrated in Table 1.

The interrelationship equations in the table result
from the fact that each person is classified as healthy or
sick by the test. In the following the terms represented
in the table will be used equivalently, meaning that we
always refer to the true positive rate when speaking of
sensitivity or hit rate.

Secondly, we continue by introducing the ROC
curves. An ROC curve is a graphical representation of
the trade off between sensitivity and specificity for every
possible cut off. By tradition, the plot of the ROC curve
shows the false positive rate on the x axis and the hit rate
on the y axis. However, based on the interrelationships
shown in Table 1, the axis of the ROC curve can be mod-
ified. Suppose the above mentioned test parameter yields
distributions for the sick and healthy groups as illustrated
in Fig. 4 on the left.

The solid line represents the distribution of the test pa-
rameter for the patient group, the dashed line for healthy
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Fig. 4: ROC explanation: sample distributions (left) for
sick (solid) and healthy (dashed) groups assuming an
imaginary test parameter yielding ROC curves (right).

controls on the left in the figure. In the upper case the
distributions have a distance of their means equalling two
standard deviations, d = 2 whereby the distributions pos-
sess the same variances. The upper right of the figure
shows the resulting ROC curve with the sensitivity and



Test for disease interrelationship
sick group healthy group

Test result: true positive (TP) rate in %, false positive (FP) rate in %, TP + FN = 100%
positive sensitivity, hit rate false alarm rate

Test result: false negative (FN) rate in % true negative (TN) rate in %, TN + FP = 100%
negative specificity

Table 1: Definition of sensitivity and specificity.

the false alarm rate as axis labels. The false alarm rate
describes the specificity as shown in Table 1. The lower
case shows the same but for d = 0.1.

Ideally, for a good separation, the sensitivity and the
specificity should be very high. As Fig. 4 illustrates, a
value for the area under the ROC curve close to 1 yields
a relatively good separation, whereas a value close to 0.5
yields a very poor performance when taking both the sen-
sitivity and separability into account.

Having introduced the ROC analysis, we continue by
showing a connection between the area under the ROC
curve and the significance level received by the t-test.

Here, we make use of the ROC analysis to evaluate
and obtained a significance level for the t-tests or ut-
tests. Moreover, for finding a prototype filter for the GF
transform, the ROC analysis is applied. The relation is
investigated as follows. Different values for the area un-
der the ROC curve are determined. For these values, two
Gaussian distributions are generated. From these distri-
butions, a certain number of random samples are taken
out and based on a t-test or ut-test, the significance level
is calculated for these samples originating from the Gaus-
sian distributions. This calculation is repeated with ran-
dom samples from the distributions and the significance
level is averaged until it converges. The ROC analysis
is independent of the sample size whereas the t-test and
ut-test depend on it. Therefore, different sample sizes
yield different relations, which is illustrated in Fig. 5 for
a significance level P received by the t-test. When using
the ut-test to investigate this relation, the results are very
similar, e.g. no differences can be observed when adding
the resulting curves to the ones illustrated in Fig. 5.

For our analysis of the panic disorder, we deal with
a sample size of 24. Table 2 shows the areas under the
ROC curve for the most commonly used significance lev-
els P [7] in more detail.

Area under the ROC curve Significance level P
0.717 0.05
0.778 0.01

Table 2: Area under ROC curve and significance levels
P for a sample size of 24.

In most social research significance levels of P =
0.05 or P = 0.01 are used to determine difference be-
tween two sets of data [7]. In other studies such as [1],
ROC values of ≈ 0.77 are found and stated to yield ac-
ceptable separation performance. Therefore, we choose
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Fig. 5: Significance Level P for t-test over area under the
ROC curve value for different sample sizes.

a significance level of P = 0.01 for our study to ob-
tain distinctive transform coefficients. Also, when test-
ing different prototype filters for the GF transform, we
choose the one having the largest ROC value for the iso-
lated transform coefficients. Next, we discuss the support
vector machine classifier we applied.

SUPPORT VECTOR MACHINES

In the following, we give a brief introduction to support
vector machines. For a detailed description, we refer to
[9, 10]. We consider a two class classification problem,
namely one class defined by anxiety causing data, and
one class describing neutral data, which is split into two
data groups, namely training data and test data, respec-
tively. The training data is described as a set of training
vectors {pi}i=1 ... M with corresponding binary labels
Si = 1 for the one class, e.g. neutral data, and Si = −1
for the second class, e.g. anxiety causing data. The SVM
conducts a classification of a test vector t by assigning a
label Ŝ by calculating

Ŝ = sign(f(t)) with f(t) =
∑

i

αiSiK(t,pi)+b.

(12)
The αi are called weights and b is the bias, which are
SVM parameters and adopted during training by max-
imising

LD =
∑

i

αi −
1

2

∑

i,j

αiαjSiSjK(pi,pj) (13)



under the constraints

0 ≤ αi ≤ C and
∑

i

αiSi = 0 (14)

with C being a positive constant which weighs the in-
fluence of training errors. K(·, ·) is called kernel of the
SVM. If there is a solution for αi, a value for b is de-
termined. There are several commonly used kernels for
SVM, which give some flexibility for the underlying ap-
plication. Many implementations of kernels can be found
in literature, whereby two popular ones are:

• Gaussian kernel:
K(pi,pj) = exp(−γ ‖pi − pj‖

2),

• polynomial kernel: K(pi,pj) = (pT
i · pj)

d,

where γ is a kernel parameter for the Gaussian kernel and
d the order of the polynomial kernel.

If K(·, ·) is positive definite, (13) and (14) is a con-
vex quadratic optimisation problem, which converges to-
wards the global optimum assuringly. This optimisation
can be quite demanding in terms of computation time for
real-world problems, and therefore, sophisticated algo-
rithms like the sequential minimal optimisation (SMO)
[9] are used for the solution.

Usually αi = 0 for the majority of i and thus the
summation in (12) is limited to a subnet of the pi, which
therefore is called the set of support vectors. For Gaus-
sian kernels, when using stretched out values for the lim-
itation of training errors defined by C and the kernel pa-
rameter γ, so called overfitting can occur meaning that all
M training vectors are identified as support vectors. To
avoid this for our application, we have chosen to use the
polynomial kernel of order d = 3 as this is assumed to be
the best comprise between computational time, avoiding
overfitting and yielding a good detection rate for the test
data.

RESULTS AND DISCUSSION

As discussed previously, we have different transform
methods and a procedure to identify significant coeffi-
cients to being able to separate biomedical data. When
splitting the data arbitrary in training and test data and ap-
plying a support vector machine as described in the previ-
ous section, we yield specific detection rates for training
data as well as for the test data where the results for the
test data describe the generalisation of the support vector
classification network. We can also apply the tests de-
scribed to unparameterised time domain data, deploy the
support vector machine classification method and yield
detection results for unparameterised data. By doing so,
we arrive at an evaluation of the parameterisation meth-
ods. In the following, we will show this procedure ap-
plied to panic disorder data.

Description of the Data

Individuals with panic disorder are characterised by an
abnormal fear of certain anxiety connected sensations

such as palpitation, breathlessness, or dizziness [2]. The
research into this disorder has led to studies investigating
its symptoms by means of appropriate stimulation and
measurement of the subsequent event related brain po-
tentials [3]. In this context, visual stimulation has been
performed with words causing panic disorder, whereby
the EEG can be recorded showing event related poten-
tials (ERP). Previous studies have resulted in revealing
a low frequent transient waveform appearing approxi-
mately 300 ms after stimulus onset as a distinctive char-
acteristic which is referred to as P300.

For our study, panic disorder ERP were measured
for an anxiety patient who was presented with fear-
inducing or neutral words tachistoscopically at the per-
ception threshold of panic disorder. The patient’s percep-
tion threshold for correctly identifying 50% of the words
was determined with neutral words not used in the exper-
iment. It can be assumed that the patient will recognise a
greater number of anxiety words given at his perception
threshold than neutral words [2]. Thus, it can be expected
that the EEG exhibit an difference when neutral and anx-
iety words are presented.

The EEG was measured at the vertex electrode (Cz)
synchronously to the stimuli, whereby the recordings
were started 100 ms before the onset of the visual word
stimulus. The data exemplary analysed in this study
contains 24 neutral word presentations and 24 anxiety
word presentations to one panic patient. Fig. 6 shows
the average over the stimulus-synchronous EEG in reac-
tion to the 24 words presented for each word category.
The figure reveals a difference in the two averages with
a stronger P300 and more positive EEG until approxi-
mately t = 700 ms in the panic disorder related data.
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Fig. 6: Average over 24 EEG segments showing re-
sponses to anxiety related and neutral stimuli at the per-
ception threshold.

Transform Adjustment

The optimal decomposition structure for the WP is found
over minimising the entropy as described in the transfor-
mation section. The decomposition depth was limited to
have at least 16 coefficients in one decomposition level
as further decomposition would lead to a too coarse time
segmentation. In terms of the Gabor transform, various
filters were tested and it was found that using a prototype
filter with length of 224, a frequency segmentation of 32
uniform scales and a time segmentation of 7 for the over-
sampling shows the best results for a ROC analysis.



Identified Coefficients and Difference Comparison

The coefficients to which the difference evaluation is ap-
plied were preselected whereby only coefficients are con-
sidered which contain 85% of the total energy. This is
reasonable, as it reduces the probability to identify coef-
ficients that contain noise only.

Fig. 7 shows the resulting coefficients when perform-
ing the difference evaluation on the parameterised data.
The coefficients cover approximately the area of the P300
slow wave as it can be expected. They are all identified
via a t-test according to a prior F -test whereby the thresh-
old for the significance level for the F -test was P = 0.05,
and for the t-test, it was set to P = 0.01.

For the unparameterised time domain data, 18 coeffi-
cients were identified, where the same statements as for
the parameterised data apply.

Fig. 8 shows the difference of the averages of the neu-
tral and anxiety EEG compared with its parameterisa-
tion by the identified coefficients for the two investigated
transforms and for unparameterised time domain data.

It can be observed that the identified coefficients pa-
rameterise the P300 better for the WP than for the GF.
However, the GF seems to show a better parameterisation
than time domain data. In order to evaluate these results,
a SVM analysis is applied next.

Detection Rates Yielded by SVM

As explained in the SVM section, a polynomial kernel of
order 3 was used for the SVM. To find a significant value
for the training error C, a leave-one-out (l-o-o) estimation
of the error rate is applied as follows: From the training
samples, remove the first example. Train the SVM on the
remaining samples. Then test the removed example. If
the example is classified incorrectly, it is said to produce
a leave-one-out error.

In [9], an approach to estimate the maximum l-o-o er-
ror is shown avoiding training the SVM more than once,
which is also used for our study. By changing the value
for C stepwise, the minimum for the l-o-o error is found
determining the SVM classification network.

Fig. 9 shows a SVM classification with a minimised
l-o-o error for a WP parameterisation. This can be shown
in a two dimensional plane as the for the WP, two coeffi-
cients were identified as significant. The two coefficients
are illustrated in Fig. 7 (left).

In Fig 9, one class is defined by 12 points originating
from arbitrary chosen neutral words and the second class
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Fig. 7: Resulting coefficients for (left) WP and (right)
Gabor transforms.
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Fig. 8: Difference of neutral and anxiety EEG data com-
pared with its parameterisation identified by the t-test for
(top) WP, (middle) Gabor transforms and (bottom) unpa-
rameterised time domain data.

represents 12 panic causing words, also chosen arbitrary
from the whole 24 defining one training data set. For this
example, class one is completely assigned correctly; class
two gets assigned incorrectly in 1

3 of all cases. This rather
asymmetric decision is due to the comparably small data
size. Therefore, the SVM classification was conducted
100 times and averaged at the end meaning in loop, 12
arbitrary measurements for the two data groups were cho-
sen, the SVM trained and the test group consisted of the
remaining 12 measurements for each word category. Ta-
ble 3 shows the results for this procedure for the training
data.

It can be seen that the time domain data and the WP
parameterisation yield comparably high values, whereas
the GF identifies around two out of three words correctly
for the training data. The number of support vectors is
similar for each case.
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Fig. 9: SVM classification with two coefficients for a WP
parameterisation on the axis.



time GF WP
domain transform transform

sensitivity 99.55 % 66.78 % 92.00%
specificity 93.13 % 65.88 % 96.28%
number of 15.68 16.65 17.39

support vectors

Table 3: Results for training data.

Next, the more interesting results for the test groups
are presented in Table 4. It can be seen that the WP

time GF WP
domain transform transform

sensitivity 67.34 % 78.49 % 82.32%
specificity 55.63% 54.39 % 52.82%

Table 4: Results for test data.

shows the overall best detection results for the test data,
followed by the GF and the time domain data perform-
ing worst. However, for the specificity all three cases are
similar around 50%.

What can be expected from Fig. 8 is confirmed: The
WP parameterisation yields the best detection rates, fol-
lowed by the GF transform and the simple time domain
data performing worst. However, the specificity for the
TF-transforms is not significant although the test data
is used for the adjustment of the parameterisation meth-
ods. This can be due to the relatively small amount of
data available. Moreover, the t-test for receiving distinc-
tive coefficients may not be powerful. Therefore, the de-
scribed system might show more encouraging results for
the analysis of biomedical data which comprises more
measurements than here and uses a different method for
the extraction of the features from the parameterised data.
However, recapitulating, it can be said that with both
transforms an adequate overall detection of data of both
categories, namely presented neutral and anxiety words,
can be achieved better than without a parameterisation of
the data.

CONCLUSIONS

We have presented an analysis comparing parameterised
data by TF transforms with unparameterised data with the
aim of differentiating between presented anxiety causing
words and neutral words to a patient suffering from panic
disorder.

The performance of the parameterisation methods
were evaluated by identifying a distinctive coefficient set
followed by a SVM classification. The obtained results
where compared with the same analysis of time domain
data without a parameterisation.

The results show that a parameterisation of biomedi-
cal data by TF transforms yield better detection rates than
a mere time domain description. However, when using
SVM for the classification and detection of diseases or
abnormalities, a relatively high number of measurements

is required.
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