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Abstract - The aim of this paper is to evaluate the appli-
cation of the discrete wavelet transform (DWT) and sup-
port vector machines (SVM) to transient evoked otoacous-
tic emissions (TEOAE) in order to achieve a detection of
frequency-specific hearing loss (HL). We introduce a system
to determine detection rates between groups of persons with
normal hearing, high frequency hearing loss, and pantonal
hearing loss. The validity and use of our approach is verified
on a different patient group.

I. INTRODUCTION

Transient evoked otoacoustic emissions (TEOAE) are used as a
clinical standard procedure to detect cochlear hearing loss [2],
and measurement equipment [1] is widely available in hospi-
tals. The analysis of TEOAE is usually performed by an human
expert. Recently, signal processing detection systems aiming
at an automated detection of cochlear hearing loss have been
motivated to assist or replace the human expert. These studies
aiming at detection of TEOAE apply discrete wavelet transform
(DWT) and neural networks [3],[4]. Here, we introduce a sys-
tem applying a DWT for feature extraction, an energy reduction
for feature selection and support vector machines for classifica-
tion.

Fig. 1 gives an overview of our system. For the feature ex-
traction, a DWT is applied. To select the features of the data,
an energy reduction by 5% to 10% is applied to the transformed
data resulting in a reduction of coefficients to be used for clas-
sification and aiming at a reduction of noisy coefficients. This
approach will be outlined in more detail in Sec. 3, following a
description of TEOAE data in Sec. 2. The classification of the
data is conducted by a support vector machine (SVM) classi-
fier explained in Sec. 4 more explicitly. In Sec. 5, based on the
training data, a support vector classification network is found
and applied to the test data group yielding detection rates which
describe the performance of the system and can be compared
with other studies. Finally, Sec. 6 draws the conclusions.

Il. TEOAE

TEOAE are low-level sounds produced by the inner ear as a
response to an external acoustic stimulus, which are measured
in the outer ear canal by sensitive microphones. This broadband
click-stimulus contains frequencies between 0.5 and 5 kHz; these
frequencies are reflected in the TEOAE and are generally be-

lieved to correspond to frequencies that are perceived by the ear
[2].

The TEOAE spectrum is latency-dependent: low frequency
components possess a prolonged latency. As the TEOAE data is
generally very noisy, it requires averaging which is performed
by the measurement equipment [1] by 520 stimulus-synchron-
ously recorded responses per ear. Two studies with each ap-
proximately 200 ears from the Universities of Homburg and
Heidelberg are used for our study whereby the Homburg data
represents the training data and the Heidelberg data the test
data group. Each study contains three classes of hearing abil-
ity, namely persons with normal hearing (NH), high frequency
hearing loss (HF), and pantonal hearing loss (PT).

In the next section, the parameterisation and feature selec-
tion of the data is described.

I1l. FEATURE EXTRACTION AND SELECTION

Due to the transient nature of the signals, previous work on the
qualitative analysis of TEOAE has focused on time-frequency
(TF) methods, such as filter banks [5], matching pursuit [6], or
discrete wavelet transforms [4], whereby a quantitative study
w.r.t. the achievable distinction of frequency-specific HL has
been performed in [4], based on the DWT. The DWT is a fixed
transform based on a “mother wavelet” from which the trans-
formation coefficients are derived by scaling, translation and
sampling. Here, we have chosen the Mallat wavelet for which
good results have been reported in [4] and which can be used
for comparison.

Based on a parameterisation of the data by the DWT, repre-
senting the feature extraction of the data, an energy reduction
by 5% to 10% is conducted which can be described as fea-
ture selection. In more detail, the smallest DWT coefficients
whose sum-of-squares makes up for 5% to 10% of the total sig-
nal power are discarded. Given the spares nature of the DWT,
the proportion of such coefficients relative to the total number
of coefficients is much greater than the energy reduction propor-
tion, hence reducing computational effort at subsequent stages.
The reduced DWT coefficients are the input for the SVM clas-
sifier shown next.

IV. SVM CLASSIFICATION

In the following, we briefly explain SVM, [7],[8]. A support
vector learning machine calculates a classification network for
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Fig. 1. Overview of the detection system for cochlear hearing loss.



a given training error and minimises the capacity of the learn-
ing machine to be able to yield a good classification for test
data which is in contrast to neural networks that attempt to min-
imise the training error for a constant capacity determined by a
certain structure choice. We consider a two class classification
problem, mutually distinguishing between the three classes of
hearing ability groups NH, HF and PT. The training data origi-
nates from the Homburg data, while the test data comprises the
Heidelberg measurements.

The training data is described as a set of training vectors
{pi}i=1 ... m» with corresponding binary labels S; = 1 for the
one class, e.g. NH, and S; = —1 for the second class, e.g.
HF. The SVM conducts a classification of a test vector t by
assigning a label S by calculating

S=sign(f(t)) with f(t) = aSiK(t,p:)+b.
' &)

The «; are called weights and b is the bias, which are SVM
parameters and adopted during training by maximising

1
Lp = Zai ) ZaiajSiSjK(p“pj) )

i,j
under the constraints

0<Oéi<0

and > 8 =0 3)

with C being a positive constant which weighs the influence of
training errors. K (-,-) is called kernel of the SVM. If there is
a solution for o, a value for b is determined. There are several
commonly used kernels for SVM, which give some flexibility
for the underlying application. Many implementations of ker-
nels can be found in literature, whereby two popular ones are
Gaussian and polynomial kernels.

If K (-, -) is positive definite, (2) and (3) is a convex quadratic
optimisation problem, which converges towards the global op-
timum assuringly. This optimisation can be quite demanding in
terms of computation time for real-world problems, and there-
fore, sophisticated algorithms like sequential minimal optimisa-
tion (SMO) [7] are used for the solution.

Usually «; = 0 for the majority of 7 and thus the sum-
mation in (1) is limited to a subnet of the p,, which therefore
is called the set of support vectors. For our application, the
polynomial kernel of order 2 was found to be the best compro-
mise between computational time, generalisability and yielding
a good detection rate for the training data.

To find a significant value for the training error C, a leave-
one-out (I-0-0) estimation of the error rate is applied as follows:
From the training samples, remove the first example. Train the
SVM on the remaining samples. Then test the removed exam-
ple. If the example is classified incorrectly, it is said to pro-
duce a leave-one-out error. In [7], an approach to estimate the
maximum I-0-0 error is shown avoiding training the SVM more
than once, which is also used for our study. By changing the
value for C stepwise, the minimum for the I-0-o error is found
determining the SVM classification network with a quadratic
polynomial kernel. The second parameter for our application
for which the 1-0-0 error is minimised is the energy reduction
by 5% to 10%.

V. RESULTS AND DISCUSSION

Having described the detection methods and the data used for
our system, we present the results in the following. We use the
term sensitivity and specificity to address a correct allocation

for a person to a hearing group. E.g. when distinguishing be-
tween NH and HF, sensitivity refers to the percentage of persons
correctly allocated to the normal hearing group and specificity
describes the patients correctly allocated to the group with high
frequency HL. For the training data, the values for sensitivity
and specificity are all close to 100% for the three possible dis-
tinction cases NH vs HF, NH vs PT and HF vs PT. The results
for the test data are illustrated in Tab. 1. Also, Tab. 1 indicates
the specificity results in [4] for the sensitivity values obtained
with our study for comparison. As mentioned in the previous
section, the results are optimised w.r.t. the retained energy.

Test data results in [4]
group sensi- | speci- energy sensi- | speci-
distinction || tivity | ficity | reduction || tivity | ficity
NH—HF || 54% | 81% 9% 54% | 89%
NH—PT || 76% | 99% 7% 76% | 98%
HF — PT 66% | 76% 5% 66% | 91%

Tab. 1. Detection rates for the test data; comparison with [4].

The table shows that our approach yields slightly better re-
sults for the NH vs PT case than in [4]. The case HF vs PT
yields less significant results, which is the most difficult case to
separate according to [4]. Moreover, the specificity for the case
NH vs HF for our system is not as significant as for the study
in [4]. Recapitulating, it can be said that our system separates
data with pronounced differences better than e.g. [4]. On the
other hand, for less pronounced differences, the performance of
our system degrades.

VI. CONCLUSIONS AND ACKNOWLEDGEMENTS

We have introduced a system for the detection of cochlear hear-
ing loss based on signal processing techniques such as wavelet
transform and support vector machines. The achieved results
were compared with a similar study. The comparison showed
some drawbacks of the system. However, when keeping these
findings in mind, the system is competitive for the detection of
cochlear hearing loss based on otoacoustic emissions.

We would like to thank Profs. Ulrich Hoppe and Sebastian
Hoth of the Universities of Homburg and Heidelberg for kindly
providing the data.
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