Measuring the Health Costs of Air Pollution: To What Extent Can We
Really Say that People are Dying from Bad Air?

Gary Koop
Department of Economics
University of Glasgow
G.Koop@socsci.gla.ac.uk

and

Lise Tole
Centre for Development Studies
University of Glasgow
ltole@socsci.gla.ac.uk
and
The World Bank, Washington, D.C.
Itole@worldbank.org

July 2002
Revised: November 2002

ABSTRACT: The estimation of the costs of environmental impacts is a major focus of current theo-
retical and policy research in environmental economics. Such estimates are commonly used, for example, to
set regulatory standards for pollution exposure, to design appropriate environmental protection and damage
mitigation strategies, to guide the assessment of environmental impacts, and to measure public willingness
to pay for environmental amenities. It is a truism to say that the effectiveness of such strategies depends
crucially on the quality of the estimates used to inform them. However, this paper argues that in respect to
at least one area of the empirical literature — the estimation of the health impacts of air pollution — most
existing cost estimates may be questionable and thus have limited relevance for environmental decision-
making. By neglecting the issue of model uncertainty — that is, which models, among the myriad of possible
models researchers should choose from to estimate costs — most studies overstate confidence in their chosen
model and underestimate the evidence from rejected models, thereby greatly enhancing the risk of obtaining
uncertain and inaccurate results. This paper discusses the importance of model uncertainty for accurate
estimation of the health costs of air pollution. Its importance is demonstrated in an exercise that mod-
els pollution-mortality impacts using a new and comprehensive data set for Toronto, Canada. The main
empirical finding of the paper is that standard deviations based on commonly used point estimates for the
measurement of air pollution-mortality impacts become very large when model uncertainty is incorporated
into the analysis. Indeed, they become so large as to question the plausibility of previously measured links
between air pollution and mortality. Although applied to the estimation of air pollution costs, the general
message of this paper — that proper treatment of model uncertainty critically determines the accuracy of the
resulting estimates — applies to many studies that seeks to estimate environmental costs.
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1 Introduction

The estimation of both the indirect and direct costs of environmental degradation motivates a great deal
of current theoretical and policy research in environmental economics. Indeed, the fact that pollution
is perceived to have large impacts that can be quantified in economic and human terms informs much
of the theoretical and policy literature on pollution regulation, abatement, and assessment of associated
environmental and health impacts.! The applicability of these estimates to the formulation of effective
environmental policies hinges crucially on the magnitude of the measured costs of the observed impact. A
wide variety of empirical techniques have been used to estimate the costs of pollution, including time series
and cohort studies of health effects and contingent valuation studies of the willingness to pay for pollution.
At the real-world level of policy-making, studies that measure the health impacts of air pollution currently
inform air pollution standards worldwide. For example, reacting to a recent U.S. Supreme Court ruling
(February 27, 2001) that upheld the responsibility of the EPA to “set air quality standards at the level that
is ‘requisite’ — that is, not lower or higher than is necessary — to protect the public health with an adequate
margin of safety” — the Executive Director of the Clean Air Trust summarized the link between science and
policy thus: “For more than 30 years, the bedrock principle of the Clean Air Act is that national clean air
standards should be based on science and the impact on public health. This bedrock principle has driven
three decades of clean air progress” (ENS 2002).

However, if empirical estimates of costs are fragile or uncertain, then the basic assumptions underlying
large parts of the environmental economics literature are called into question. This paper will argue that —
at least in respect to one area of this literature — the estimation of human health effects of air pollution —
it is quite difficult to estimate these costs precisely once it is acknowledged that there are many plausible
models that could be used to estimate them. Our results apply to a particular data set and a particular
environmental cost (i.e. the health effects of air pollution). However, our general message — that proper
treatment of model uncertainty is crucial — holds for virtually any study that seeks to estimate environmental
costs.

This paper attempts to estimate the health effects of air pollution in a large metropolitan city using
time series data. The time series literature on air pollution-mortality effects, which uses various measures
of mortality, pollutants and meteorological variables, has tended to find that air quality does have an effect

on mortality (see, among many others, Burnett et al. 1997, Dominici et al. 2000, Ross et al. 1996, Ostro,

LThis literature is too voluminous to cite here. A few recent contributions include Alberini et al. (1997), Delucchi, Murphy
and McCubbin (2002), Hahn (2000), Khanna and Damon (1999), Krupnick et al. (1999, 2000), Navrud (2001) and Schennach
(2000).



Hurley and Lipsett, 1999, Schwarz, 1993). However, concerns have been raised in the statistical literature
about whether these findings are an artifact of data mining (i.e. of presenting results from a single model
based on sequential testing procedures). A 1998 report by the U.S. National Research Council also made
the investigation of this issue a research priority (see National Research Council, 1998). On a related issue,
there is disagreement over exactly which confounding variables to include in the analysis of pollution health
impacts (e.g. meteorological variables, time effects that capture long term trends, other temporal factors
due to flu epidemics, and so on). The multiplicity of potential models raises questions about the appropriate
model with which to estimate these impacts.

An increasingly popular way of surmounting the problems associated with sequential hypothesis testing
procedures is to use Bayesian model averaging techniques. A series of papers, Clyde (2000), Clyde and
DeSimone-Sasinowska (1997) and Clyde, Guttorp and Sullivan (2000), use Bayesian model averaging proce-
dures to investigate the effect of particulate matter on mortality. These papers find that model uncertainty
is a very important determinant of results, at least for data sets for Phoenix, Arizona and Birmingham,
Alabama. Of particular importance are the findings that posterior distributions for relative risks are fairly
dispersed and allocate appreciable probability in regions near one. In other words, these studies find that
the hypothesis that particulate matter has no effect on health is not so unlikely. Proper treatment of model
uncertainty is the fundamental message of this literature; indeed, we argue that the credibility of the finding
that pollution may result in death may hinge on this issue.

The use of Bayesian model averaging in the measurement of the health effects of air pollution distinguishes
our work from virtually all of the related literature. The main exception is that by Clyde (2000), Clyde
and DeSimone-Sasinowska (1997) and Clyde, Guttorp and Sullivan (2000). The present study differs from
these papers in several ways. Chiefly, we use a more extensive data set on a hithero largely unanalyzed city:
Toronto, Canada. We also use a wide range of pollutants rather than just one. Furthermore, the work of
Clyde et al. does not include potentially important interactions between pollutants or between pollutants
and meteorological variables. In contrast, the comprehensive nature of our data set and the inclusion of
interaction terms are an advantage of the present study. These advantages, however, cause computational
problems in that the huge number of explanatory variables mean that a direct implementation of traditional
Bayesian model averaging algorithms is impossible. Consequently, we suggest various ways of addressing
this problem.

We find that our empirical results are robust to choice of particular algorithm. That is, we find that

point estimates of health effects of pollutants are positive. Yet, when we allow for model uncertainty, we find



that standard deviations become so large that the hypothesis of no effect is always plausible. We caution
that this finding does not necessarily mean that air pollution has no effect on human health. Rather, as we
argue, a thorough econometric analysis, which treats the problems raised by model uncertainty, indicates
that there is not enough information in the time series data to estimate its effect on mortality precisely, at

least for our chosen case study of Toronto.

2 Bayesian Model Averaging

In theory, estimates of the health effects of air pollution can be found by running a regression of a health
variable (e.g. mortality) on relevant pollutants and other explanatory variables (e.g. meteorological vari-
ables). This is what most studies do. However, in practice, there is uncertainty over which pollutants and
which meteorological variables are relevant for the study. Hence the researcher may wish to investigate
many possible explanatory variables. Furthermore, the precise timing of health effects is unclear, and for
this reason, many lags of the explanatory variables should be included. Another important issue (which has
not been extensively explored in the literature) is whether important interactions exist between explanatory
variables (e.g. whether health effects worsen if both ozone and particulate matter are high on a given day).
In short, an enormous number of potential explanatory variables exist, and, likewise, an enormous number of
potential models. If there are K potential explanatory variables and each model is defined by the inclusion
or omission of an explanatory variable, then there are 2% possible models. In the present application, K
could easily be 100 or more, implying billions of possible models.? The usual practice is to use hypothesis
testing procedures to select a single model from among the billions of potential models, and to present results
from this model as being representative of the “true” model.

The problems associated with the presentation of results from a single model selected on the basis of
a sequence of hypothesis tests has long been recognized in the statistical literature. Increasingly, these
problems are being acknowledged in applied economics (e.g. Fernandez, Ley and Steel, 2001a and Sala-i-
Martin, 1997). Statistical discussions of these problems are provided in many places. For instance, Poirier
(1995), pp. 519-523 provides a theoretical discussion of the problems with pre-test estimators. Draper (1995)
and Hodges (1987) are also important references in this field.

For the purposes of this paper, we need only provide a brief, intuitive, description of key issues which these
papers address. First, these papers draw attention to the fact that each time a hypothesis test is carried out,

the possibility always exists that a mistake will be made (i.e. the researcher will reject the “better” model

2Since 2190 is more than 1039 cven referring to “billions of models” is possibly a misleading underestimate.



for a ¢

‘not so good” one). The possibility of making a mistake quickly multiplies as sequences of hypothesis
tests are carried out. So, for instance, a claim that a regression t-statistic of 2.0 means that a hypothesis
is rejected at the 5% level of significance is spurious and, potentially vastly misleading, if the regression is
selected on the basis of previous hypothesis tests. Second, even if a sequential hypothesis testing procedure
does lead to the selection of the “best” model, standard decision theory implies that it is rarely desirable
to simply present results for this model and ignore all evidence from the “not quite so good” model(s).
Generally speaking, this is reflected in the common empirical wisdom that, if you mine the data long enough
you are bound to find something — but you should not put too much trust in your finding.

Given problems caused by sequential hypothesis testing procedures, the researcher may be tempted
simply to include all potential variables in a regression. However, this approach is also unsatisfactory since
including irrelevant variables tends to decrease the accuracy of the estimation, making it difficult to uncover
effects that may really exist. In classical statistical procedures, including irrelevant explanatory variables will
increase standard errors, making it difficult to find significant effects. These pitfalls motivate an increasing
interest among researchers in model averaging: a method in which empirical results are based on a weighted
average of results from many models. The weights in the average are based on the probability that each
model is the correct one. However, formally classical econometric methods do not allow for the calculation of
the “probability that a model is the correct one”. For this reason, many have turned to Bayesian methods.
The literature on Bayesian model averaging has burgeoned in recent years (see Hoeting et al, 1999, for a
recent survey and practical guide). The basic idea behind Bayesian model averaging can be explained quite
simply: Suppose the researcher is entertaining R possible models, denoted by Mj, ..., Mg, to learn about a
parameter of interest, 6 (e.g. the effect of a pollutant on health). For the models considered in this paper,
it is straightforward to use the data to calculate the probability that a model is a correct one. That is,
p (M,|Data) can be calculated for r = 1,.., R. It is also straightforward to calculate a point estimate of 6 in
every model. We take the posterior mean, F (6| Data, M), as this point estimate. According to the rules of
probability, it follows that:

R
E (6| Data) =Y _p(M,|Data) E (6| Data, M,) . (2.1)

r=1

In words, the overall point estimate of 6 is the weighted average of the point estimates in every model. The
weights in the weighted average are the posterior model probabilities, p (M,.|Data) for r = 1,.., R. This same

logic applies to functions of 8 so, for instance, we can use:



R
E (6*|Data) = p(M,|Data) E (6°| Data, M,) (2.2)

r=1

to help us calculate the posterior variance of @, which can then be used to quantify uncertainty about .> The
precise formulae for p (M,.|Data) and E (6| Data, M,.) are provided in the Technical Appendix to this paper.
To provide some intuition we note that E (8| Data, M,) is similar to an OLS estimate and p (M, |Data) shares
some similarities with information criteria such as the Schwarz criteria or Akaike information criteria.

Four additional points should be stressed at this stage. First, many researchers feel that the real world
is very complicated and that all models under consideration are likely to be approximations of reality and,
thus, wrong. If all models under consideration are wrong, then model averaging can be interpreted as a
way of adding robustness to protect against misleading inferences. Second, Bayesian methods allow for the
incorporation of prior information about the parameters of the model. However, in this paper we do not
elicit such a prior but rather use the objective or benchmark prior recommended in Fernandez, Ley and Steel
(2001b). Third, with the enormous number of models under consideration, it is not possible to evaluate
p (M, |Data) and E (8| Data, M,) for every model. This is a common occurrence in empirical work involving
Bayesian model averaging. A literature has developed that devises various ways of overcoming the problem.
In this paper we use an algorithm described in Madigan and York (1995) referred to as Markov chain Monte
Carlo model composition (MC3). Intuitively, this involves randomly drawing models in such a way that
a given model is drawn with frequency proportional to p (M,|Data). In this way, the algorithm focuses
on the models with high probability (which thus receive high weight in the model averaging procedure),
avoiding the models with low probability. Further details are given in the Technical Appendix. Fourth,
for the non-Bayesian reader, it should be stressed that the different between our results and those obtained
using traditional methods are due to the treatment of model uncertainty and not due to any other aspects
of the Bayesian methodology. For instance, in this paper, we use priors which are fairly noninformative
relative to the data. Numerous empirical and theoretical papers have shown that, in the context of a single
model and without strong prior information, Bayesian and non-Bayesian studies will yield yield similar point
estimates (i.e. posterior means and OLS estimates will be similar) and measures of parameter uncertainty
(i.e. posterior standard deviations and standard errors will be similar). It is likely that a classical statistical

methodology which used model averaging would lead to similar results as those presented here.*

3To be precise, the posterior variance of @ is given by var (8| Data) = E (92\Data) — [E (8| Data)]?.

4Formally, model averaging cannot be done in a classical framework since models are not random variables. Hence, for the
classical econometrician statements such as ” the probability that a model is true” has no well-defined meaning. Model averaging
can, however, be carried out classically in an ad hoc fashion using, e.g., penalized likelihoods or information criteria to weight
different models (see Sala-i-Martin, 1997).



3 Empirical Results

3.1 Overview

This section contains empirical results using daily time series data from Metropolitan Toronto for the years
1992-1997. The complete data set is described in the Data Appendix. Given our message — that empirical
results should reflect model uncertainty — we do not simply present our final results. Instead, we offer some
discussion of and motivation for the route that leads us to our final specification.

In all cases, our dependent variable is a measure of mortality. For reasons discussed in the Data Appen-
dix, we focus on total mortality although we note that findings for deaths due to diseases of the circulatory
and respiratory systems are very similar.” A myriad of potential explanatory variables could be included
here. Typically, previous researchers have chosen a small subset of relevant variables, focusing on a single
pollutant and/or using hypothesis testing procedures to discard many potential variables from the analysis.
In the previous section, we argued that such a procedure could lead researchers to make seriously misleading
inferences about the health effects of air pollution. Consequently, we use a much bigger set of explanatory
variables involving seven pollutants and five weather variables. The seven pollutants are denoted by SOa,
CO, NO, NOg, O3, PMs5 and PMs 5 10.° All of these have been used (usually one at a time) in previous
studies, although recently interest has focused on fine and coarse particulate matter (PMs 5 and PMs 5 19).
The study’s five weather variables are barometric pressure (PRESSURE), temperature (TEMP), humidity
(HUMIDITY), total amount of cloud (CLOUD) and wind speed (WIND).” All explanatory variables are
standardized by subtracting their mean and dividing it by their standard deviation.® The Data Appendix
provides further details about the data. The weather and pollution variables provide us with twelve explana-
tory variables. However, we recognize the possibility that there may be important interactions between these
variables (e.g. the effects of pollutants may worsen on hot days or the effect of a certain pollutant may be
greater when combined with high values of another pollutant). Thus, it is important to allow for interactions
between all the weather and pollution variables. However, there are 66 possible interactions. Including each

of the original variables along with every possible interaction between them gives us 78 explanatory variables.

5The units of our dependent variables are deaths per day. We note that results using logged daily deaths do not alter our
basic empirical findings.

6We have data on NO,, but this variable is nearly perfectly correlated with NO and, for this reason, it is excluded from the
analysis.

TSchwarz (1993) does not include wind speed since it is unlikely that this variable directly influences mortality. However, low
wind speed tends to be associated with high pollution events and, thus, there is a risk that the cffects of pollution on mortality
will be counfounded incorrectly with wind speed. In an early version of this paper, we eliminated wind speed as well. Results
were virtually the same as those presented here.

8 All explanatory variables are daily averages. Results using other transformations of the original hourly data (e.g. daily
maxima) arc essentially the same as those presented here.



In addition, it is important to allow for time lags of every variable. In this paper we include the current
value of every explanatory variable along with up to three lags. This results in 312 potential explanatory
variables.

However, there are still more potential explanatory variables that must be included in the analysis. In
time series analyses of pollution-health effects, it it is obviously important to control for long term trends
and other systematic variations in mortality that are unrelated to air pollution. Splines are typically used
to correct for such effects.? In particular, spline methods are often used to approximate relationships of
unknown form and, thus, are closely related to nonparametric methods. Simply put, a spline is a flexible
way of approximating the relationship between two variables when the exact functional form is unknown.
In contrast, a linear regression assumes a straight line relationship between two variables — y and x — such
that the functional form is linear. However, it is highly unlikely that the relationship between mortality and
outbreaks of the flu, for example, will conform to a straight line; experience tells us that it will more likely
fluctuate, rising for a few weeks and then falling as infection rates decline. Hence the need for a method that
does not make assumptions about functional form.

Recent statistical work on the use of splines in air pollution-mortality studies (see, e.g., Clyde, 2000)
makes three main conclusions: i) including a spline is potentially important; ii) the precise choice of class
of spline (e.g. cubic, thin plate, etc.) is relatively unimportant; iii) the precise choice of time scale (i.e. the
number of knots) is potentially very important. In respect to the latter, if we include too few knots, we do
not fully correct for the unknown trend terms (e.g. the increase in mortality caused by flu epidemics could
be attributed to air pollution). However, if we include too many knots, then important health effects may
be removed (i.e. the spline will be so flexible as to explain all the variation in mortality, leaving nothing left
for air pollution to explain). In light of these considerations, the recommended strategy, which we follow
here, is to choose a particular class of spline, put in numerous knots and then use Bayesian model averaging
to deal with the excessive number of explanatory variables.

In this paper, we use a thin plate spline with a knot placed every 60 days. If we let n; denote the knot

at time 7 and N the number of knots, then the unknown trend is given by:

f(t)=ao+ Zajbj (t),

where

989pline methods are often used to approximate relationships of unknown form and, thus, are closely related to nonparametric
methods. Our spline is a function of time. To fit a spline, the researcher chooses several points in time (referred to as knots)
and fits the unknown trend by connecting the dots. Various curves can be used to connect the dots and the decision on what
type of curve to fit (e.g. cubic, etc.) determines the class of splines.



bj (t) = (t —n;)* log (|t —n ).

From a statistical point of view, the key point to note is that b; (¢) can be interpreted as an explanatory
variable and «; as a regression coefficient. Thus adding a spline is akin to adding explanatory variables to a
regression. Thus, our Bayesian model averaging approach is not complicated by adding a spline. Nevertheless,
the number of additional explanatory variables can be quite large. In our case, inclusion of a spline adds 36
explanatory variables.

Thus, a very general model would include 348 potential explanatory variables. That is, we have twelve
air pollution and meteorological variables and 66 interactions between these variables. If we include current
values and up to three lags of all variables the number rises to 312 potential explanatory variables. Adding
in the 36 explanatory variables implied by the spline leads to 348 in total. However, directly implementing
Bayesian model averaging for more than approximately 50 potential explanatory variables is impossible
given current computational limitations. Consequently, we cannot directly use the algorithm outlined in the
Technical Appendix on the full model. In the remainder of this section we describe various special cases
or algorithm modifications that allow for the implementation of Bayesian model averaging. Our strategy is
to investigate the air pollution-mortality relationship using a variety of different approaches on the grounds
that empirical findings that are robust across various approaches are more reliable than results using one

approach.

3.2 Case 1: No Interaction Terms and No Spline

We begin by presenting results for what might be considered a conventional case. Very few empirical studies
have included interaction terms and many of the less statistically-sophisticated studies do not include splines
(or other terms that control for trends in mortality). Thus a model that only includes our seven pollutants
and five meteorological variables (and three lags of each) is a good starting point for our investigation of the
mortality effects of air pollution. This type of reasoning implies a regression with 48 potential explanatory
variables. Thus, as described in the Technical Appendix, conventional Bayesian model averaging, which
directly uses the MC? algorithm, is computationally demanding but feasible

Table 1 presents the proportion of models visited by the MC? algorithm which contained each explanatory
variable. Intuitively, these numbers can be interpreted as the probability that each explanatory variable has
a substantive effect and should be included in the model. It can be seen that some of the meteorological

variables undoubtedly have an effect on mortality (e.g. the current day’s barometric pressure should be
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included with 98.9% probability and the temperature three days ago enters 82.9% of the models). However,
none of the pollutants at any of the lags considered enters with any appreciable probability. Yesterday’s level
of carbon monoxide enters with 34.9% probability and the current day’s level of ozone is included 14.2% of
the time, but these probabilities are all quite low. Thus, it seems unclear whether any of the pollutants has

an appreciable effect on mortality.

Table 1: Probability of Including Each Explanatory Variable
Explanatory
Variable Lag
0 [ T [ 2 ] 3
Pollutants
SO4 0.032 | 0.027 | 0.031 0.067
CO 0.047 | 0.349 | 0.058 0.035
NO 0.023 | 0.042 | 0.046 0.044
NO2 0.026 | 0.067 | 0.074 0.054
O3 0.142 | 0.026 | 0.026 0.029
PMs5_10 0.021 | 0.024 | 0.023 0.020
PMs 5 0.040 | 0.070 | 0.021 0.021
Meteorological Variables

PRESSURE 0.989 | 0.497 | 0.415 0.141
TEMP 0.089 | 0.347 | 0.214 0.829
HUMIDITY 0.025 | 0.050 | 0.033 0.023
CLOUD 0.023 | 0.045 | 0.027 0.135
WIND 0.095 | 0.067 | 0.096 0.020

This finding is bolstered if we calculate the cumulative effect of each pollutant on health using Bayesian
model averaging. This cumulative affect is the standard multiplier (i.e. for any pollutant, we sum the
coefficients of the current value and all lags). Table 2 presents the posterior mean (i.e. a point estimate) and
posterior standard deviation (i.e. a measure of uncertainty in the point estimate akin to a standard error) of
the cumulative effect of each pollutant. To aid in interpretation, remember that the explanatory variables
have been standardized so that a cumulative effect of, say, 0.5, for a particular pollutant, means that a rise

in that pollutant of one standard deviation (maintained over four days) is associated with an additional 0.5

deaths.

Table 2: Cumulative Effect of Each Pollutant on Mortality
Posterior Mean | Posterior Standard Deviation

SOq 0.029 0.106

CcO 0.200 0.260

NO 0.025 0.109

NOq 0.056 0.156

O3 0.054 0.159

PMa.5_1¢ 0.004 0.055

PMa 5 0.029 0.111

As expected, the point estimates in Table 2 are all positive (indicating that air pollution is harmful to
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health). However, the magnitude of all of these effects is quite small and the posterior standard deviations
are very large. Thus, there exists enormous uncertainty over the magnitude of the health effect of these
pollutants. Put another way, faced with this statistical evidence, we expect no researcher would feel confident
offering policy advice of the form: “The cumulative effect of fine particulate matter on mortality is 0.029”.
The uncertainty associated with this point estimate is much too large for such advice to be taken seriously.

The reason for why the posterior standard deviations are so large is that model uncertainty is huge. The
ten most probable models in total only account for 12.2% percent of the total probability. And there is only
a 3.9% chance that the best model is a correct one. Thus, any analysis which selects only the single best
model will be basing inference on a model which is 96.1% sure to be incorrect! To illustrate the effect of
model uncertainty, Figure 1 plots the posterior of the cumulative effect of ozone on mortality. The spike
in the posterior at zero means that most of the probability is associated with models where ozone (and its
lags) do not enter the model. That is, models which elicit statements of the form: “ozone has no effect on
mortality” receive most support from the data. Another noteworthy point is that the posterior allocates
some probability to negative values for the effect of ozone on mortality. In other words, some models exist
that actually imply that ozone should be beneficial to health! Given our models are defined according to the
inclusion or exclusion of explanatory variables, we can say that some (relatively implausible) combinations

of explanatory variables imply that the effect of ozone on mortality is negative.

The most probable model includes only weather variables. However, the third most probable model
includes CO lagged one period as an explanatory variable (as well as some weather variables). The Bayesian
who estimated this single model using a noninformative prior would obtain a posterior mean of 0.405 and
posterior standard deviation of 0.163 for the coefficient on CO lagged one period. The non-Bayesian using
this single model would have obtained an OLS estimate of this coefficient of 0.405 and a t-statistic of 2.48.
Thus, either of these econometricians who ran only this single regression would conclude that CO has a
large, statistically significant effect on mortality. Given the imperfections associated with model selection
techniques like stepwise regression, it is distinctly possible that a researcher could end up selecting this
third most probable model and reporting strong health effects for CO. However, from our Bayesian model
averaging perspective we can calculate that there is only a 1.8% chance that this model is the correct
one. This illustrates how a method that presents results from a single regression has the potential to lead
researchers to make misleading inferences about pollution-mortality effects, seriously underestimating the

true uncertainty about the statistical evidence.
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Figure 1: Posterior of Curulative Effect of O3
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3.3 Case 2: No Interaction Terms, Spline Included

A critic may object to our Case 1 results on the grounds that no spline was included. However, the addition of
a spline raises the number of explanatory variables to 84, thereby precluding a direct implementation of our
MC? algorithm. Accordingly, we describe a new method for implementing Bayesian model averaging. With
traditional Bayesian model averaging, the set of models is defined by whether each variable is included or
excluded. If K is the number of potential explanatory variables, then we have 2% models. For K greater than
50, the number of models is simply too large. Even using an MC? algorithm (and allowing the computer to
run for days), does not allow for accurate estimation of the relevant posterior model probabilities. However,
nothing in the theory underlying either Bayesian model averaging or the MC? algorithm implies that models
are defined by the inclusion or exclusion of a single explanatory variable. Consequently, we can define our
models in terms of whether groups of explanatory variables are included or excluded. If G is the number of
groups, then we have 2¢ models. In Case 2, we define our models as being dependent on whether groups
of two explanatory variables are included or excluded. So even though K=84, we have G=42 and Bayesian
model averaging is computationally feasible.

The format of our problem suggests a logical way to choose groups of two explanatory variables: For
each explanatory variable we take the current and first lag of each of the original variables as a group and
the second and third lags as another. So, for instance, different models are defined by whether Os does
or does not have a short run effect (i.e. whether today’s and yesterday’s levels of ozone have explanatory
power for mortality). Other models are defined by whether O3 does or does not have a medium run effect
(i.e. whether levels of ozone two and three days ago have explanatory power for mortality). Previously, we
defined our models treating O3 today, Os yesterday, Os two days ago and Os three days ago as separate
explanatory variables; here we group the ozone lags into two separate groups. The same grouping holds for
each pollutant and meteorological variables.

For the spline, we use the same strategy and define models by including or excluding groups of two knots.
However, the knots are reordered so that we do not drop two knots in a row. To be specific, if the knots
are originally ordered as 1,2,3,4,..,N, we re-order them as 1,3,5,..,N-1,2/4,6,...N. So knots 1,3 are grouped
together, as are knots 2,4, etc..!”

Table 3 presents the posterior mean and standard deviation of the effect of each pollutant on mortality.

10Tn an early version of this paper, we used a two-stage strategy suggested by Clyde (2000). In the first stage, we carried
out Bayesian model averaging using the spline explanatory variables and calculated the posterior mean of the trend. In the
second stage, we carried out Bayesian model averaging using the air pollution and meteorological variables (and their lags) as
explanatory variables with the posterior mean of the trend added as a single extra explanatory variable. A problem with this
strategy is that it may over-fit the unknown trend. Nevertheless, empirical results using this two-stage approach are qualitatively
similar to those presented in this paper.
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Results are basically the same as in Case 1, in the posterior means are all positive, but very small relative to
posterior standard deviations. The main difference between Case 1 and Case 2 is that the effects are smaller
in the latter case. This is as we would expect. Case 1 omits the spline and, thus, long term and other trends
in mortality could be incorrectly attributed as being due to air pollution. Thus, the health effects of air

pollution in Table 2 could be overestimates.

Table 3: Cumulative Effect of Each Pollutant on Mortality

Posterior Mean | Posterior Standard Deviation
SO2 0.013 0.088
CcO 0.004 0.045
NO 0.001 0.018
NO, 0.027 0.123
O3 0.020 0.102
PMs.5_1¢ 0.002 0.032
PMy 5 0.017 0.098

For the sake of brevity, we do not present additional empirical results for this case. Suffice it to note
that they are qualitatively similar to those for Case 1. A table comparable to Table 1 would indicate little
support for any of the pollutants being in the model. The meteorological variables temperature and pressure
do, however, come through strongly (as do several of the spline terms). Many models receive appreciable
probability, making it is risky to choose a single model. This fact once again highlights the importance of

model averaging.
3.4 Case 3: Including Interactions Terms and Spline

An important, and relatively unexplored, avenue by which air pollution may affect health is through in-
teractions between various pollutants or between various pollutants and meteorological variables. Ideally,
we should implement Bayesian model averaging using pollutants, meteorological variables, interactions and
a spline. However, as discussed, such a strategy involves using 348 potential explanatory variables — and,
even with MC? algorithms — the implementation of Bayesian model averaging (as described in the Technical
Appendix) is not computationally feasible with this number of variables. In Case 3, we reduce the number
of potential explanatory variables and then carry out Bayesian model averaging in a way using the grouping
strategy described in

First, we begin by omitting NO, NOg, CLOUD, HUMIDITY and WIND variables from the analysis.
These are not commonly used in previous research. QOur previous empirical results also found that these
variables were never important. Even with these omissions, we still have five pollutants and two weather
variables. Allowing for interactions between all of these variables, the inclusion of three lags and the spline, we

are left with 148 potential explanatory variables; still far too many explanatory variables for implementation
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of traditional Bayesian model averaging. Accordingly, we use the grouping strategy outlined in Case 2 with
G=4. The format of our problem suggests a logical way to choose groups of 4 explanatory variables: Take
the current and three lags of each of the original variables. So, for instance, our models are defined by
whether O3 does or does not enter into the analysis in any form (i.e. either through current day’s value or
through any of the last three days).

Empirical results using this strategy are presented in Table 4. This table is organized such that the
diagonal elements are the probability that the original explanatory variables (including the current value
and three lags) should themselves be included. The off-diagonal elements refer to the interaction terms.
So, for instance, the number in the cell for the row labelled “Os” and the column labelled ”TEMP” is the
probability that the interaction of ozone and temperature (including the current value and three lags) should

be included. For the spline, we use the same strategy as in Case 2 (except with G=4).

Table 4: Probability of Including Each Group of Explanatory Variables
E’?}’;fgitlzry SO, | CO | O3 | PMss_19 | PMas | PRESSURE | TEMP
SO2 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000
CcO 0.000 | 0.000 0.000 0.000 0.000 0.000
O3 0.000 0.000 0.000 0.000 0.000
PMa5 10 0.000 0.000 0.000 0.000
PM, 5 0.000 0.000 0.000
PRESSURE 0.807 0.000
TEMP 1.000

With the exception of temperature and barometric pressure, Table 4 is composed of zeros (to three
decimal places). None of the groups of explanatory variables relating to pollutants or interactions involving
pollutants has enough explanatory power for the Bayesian model averaging procedure to include them. Given
our previous results, this finding is perhaps not surprising. Our previous results indicate that it is difficult
enough to find an individual explanatory variable with sufficient explanatory power to warrant inclusion.
Finding a group of several explanatory variables with enough joint explanatory power to warrant inclusion
will be even more difficult. We do not present further results for this case since, in light of Table 4, the

cumulative effect on mortality for each pollutant or interaction term will be estimated as zero.

3.5 Case 4: Restricted Sets of Explanatory Variables

One could criticize the results in the previous sections on the grounds that each involved making a compromise
that made the empirical exercise computationally feasible. In Case 1, the spline and interaction terms were
omitted. In Cases 2 and 3, more explanatory variables were included but compromises were made with

respect to the statistical methodology used. Furthermore, one could argue that, by including so many
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pollutants, it is difficult to find statistical evidence in favor of the inclusion of any single pollutant. This
latter criticism is probably not a valid one since the various pollutants are not that highly correlated with
one another. The highest correlation (0.76) occurs between CO and NO, but most of the correlations are
much lower. Nevertheless, some researchers may be interested in empirical results based on fewer pollutants.

In light of these potential criticisms, we have carried out extensive empirical work using subsets of the
original explanatory variables, and our qualitative results are always similar to those above. That is, point
estimates indicate that air pollution tends to increase mortality by a small amount. However, once model
uncertainty is accounted for in the analysis, posterior standard deviations are very large relative to point
estimates. Thus, it is impossible to conclude that air pollution has a statistically significant effect on mortality
and — most importantly — it is dangerous to use point estimates as a basis for policy prescription. We do not
want to place too much weight on these results based on restricted sets of explanatory variables since, by
using subsets of our original explanatory variables, we are moving in the very direction that we have been so
critical of earlier in this paper. That is, by discarding variables because they seemed to be unimportant in
Case 1 and Case 2, we are adopting a strategy which shares some similarities with the pre-testing procedures
we have criticized above. However, we present some of these results here in order to convince the reader of
the robustness of our results.

For the sake of brevity, we do not present results for all of the specifications. Rather, we present results
of seven Bayesian model averaging exercises where the pollutants are included one at a time. That is, we
implement BMA seven different times using seven different sets of explanatory variables. Each of these
contains a single pollutant along with the same set of meteorological variables and spline. Since we have
seven pollutants, this leads to seven different implementations of BMA.

Thus, each set of explanatory variables contains a pollutant. Previous results indicate pressure and
temperature are the most important meteorological variables and hence we include them. Including current
values and three lags of these three explanatory variables (i.e. a pollutant plus temperature and pressure)
along with interactions results in 24 explanatory variables. Adding a slightly coarser spline with a knot
located every three months results in 24 more potential explanatory variables, or 48 in total. With this
number it is possible to directly implement Bayesian model averaging in the manner described in the Technical
Appendix without making any of the compromises of previous cases.

Table 5 presents the posterior means and standard deviations of the cumulative effect of each pollutant
and interactions involving each pollutant. It can be seen that the magnitude of the pollution effects are (as

expected) a bit larger, but are still not large relative to posterior standard deviations. That is, the posterior
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mean of the cumulative effect of each pollutant is never much more than one posterior standard deviation
from zero (and often much less). In a similar fashion, there is little evidence for the importance of any of the
interactions. Although for ozone and coarse particulate matter, there is some weak evidence (posterior mean
roughly 1.5 posterior standard deviations from zero) that the interaction between the pollutant and temper-
ature might have some affect on mortality. Although we do not report them here, it is worth mentioning
that the meteorological variables have a strong explanatory role (as do many of the terms in the spline).
To provide a more intuitive interpretation of our results, let us focus on ozone. Since our explanatory
variables are standardized to have mean zero and standard deviation of one, the interpretation of the cu-
mulative effect of O3 on mortality may be expressed as follows: If unusually high levels of O3 are sustained
for at least three days (i.e. the level of ozone is two standard deviations above its mean), then the point
estimate in Table 5 suggests an increase in daily mortality of over half a death per day (i.e. 2x0.268=0.536).
Since the average number of daily deaths in Toronto during our time period is only 47, this point estimate
is fairly substantial. However, the posterior standard deviation associated with this measure is 0.598 which
is very large relative to the magnitude of the effect. Thus, once again we can conclude that, when model
uncertainty is taken into account, point estimates are extremely unreliable and should not alone be used for

policy purposes.
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Table 5: Cumulative Effect of Each Pollutant
and Interactions involving a Pollutant on Mortality
Posterior Mean Posterior. S‘?andard
Deviation

Included Pollutant is SOy

SO4 0.232 0.275

SO, xPRESSURE 0.003 0.048

SO2 x TEMP 0.015 0.123
Included Pollutant is CO

CO 0.278 0.278

COxPRESSURE —0.004 0.052

COxTEMP 0.151 0.236
Included Pollutant is NO

NO 0.022 0.090

NOxPRESSURE 0.013 0.063

NOxTEMP —0.023 0.184
Included Pollutant is NO»

NO, 0.322 0.296

NO2xPRESSURE 0.017 0.075

NOy; xTEMP 0.093 0.185
Included Pollutant is O3

O3 0.268 0.299

O3xPRESSURE 0.003 0.071

O3 xTEMP 0.354 0.256

Included Pollutant is PMs 5_1¢

PMs 5_19 0.087 0.169

Pl\’lg.g),lo xPRESSURE 0.002 0.057

PMs 5_10xTEMP 0.340 0.242

Included Pollutant is PMs 5

PMs 5 0.295 0.308

PMs 5 xPRESSURE 0.039 0.116

PM; 5 xTEMP 0.176 0.233

For the case where ozone is the single pollutant used, a key message of this paper — model averaging can
yield results which are substantially different from those based on a single model — is particularly relevant.
Of the 2*8 models we consider, the most probable model contains today’s level of ozone as an explanatory
variable (as well as several other explanatory variables). A noninformative prior Bayesian (or a non-Bayesian
researcher using OLS) who presented results for this most probable model would estimate the effect of ozone
on mortality to be 0.526 (much larger than that presented in Table 5) with a posterior standard deviation
(or standard error for the non-Bayesian) of 0.176. For the non-Bayesian, this would translate into a very
significant t-statistic of 2.987. Thus, the Bayesian or non-Bayesian researcher who used only this single
regression would conclude that ozone has a sizeable and strongly significant effect on mortality. Note,
however, that this most probable model receives only 0.23% of the probability. Thus, the researcher who

chooses this single model would be ignoring hundreds of other, almost equally plausible models (many of
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which imply that ozone has no effect on mortality). In such circumstances, where a myriad of potential
explanatory variables exist and there is thus great uncertainty over which model is the correct one, it is very

important that empirical results incorporate this uncertainty.

3.6 Comparison with Related Work

There are so many other studies of the effect of air pollution on mortality using daily time series data
that a thorough comparison of our work with others is not possible. However, the vast majority of studies
have found that air pollution has a positive and statistically significant effect on mortality. For instance,
Environment Canada scientists carried out a literature survey with regards to the effect of ozone on mortality

and concluded:

On balance, the time series studies examined in this analysis indicate that the association
between ozone and mortality is positive, consistent and independent of other co-occurring air
pollutants including particulate matter. Seventeen of the 23 studies examined reported statis-
tically significant independent associations using single pollutant models. Fourteen studies re-
ported results using multi-pollutant models, eleven of which demonstrated statistically signficant

independent associations between ozone and mortality. (NAAQO, 1999).

Environment Canada scientists reached similar conclusions for other pollutants.

However, other recent studies, which use more sophisticated statistical methods, indicate that the findings
of the present study are not unreasonable. Clyde (2000) is the work most closely related to our own. This
paper uses Bayesian model averaging on a different data set (particulate matter for Birmingham, Alabama)
with different explanatory variables, but finds results qualitatively similar to those in the present study. That
is, point estimates indicate particulate matter has a positive effect on mortality but 95% posterior density
intervals include points of no effect. Clyde (2000) presents relative risks (so that a value of 1.0 indicates a
pollutant has no effect on mortality) and concludes ”Relative risks based on a 10 pg/m® change.... lead to
[95%)] intervals of (0.995,1.016) under [a prior based on AIC] and (0.999,1.011) under [a prior based on BIC]
using Bayesian model averaging”.!!

Another influential recent study is Dominici, Samet, and Zeger (2000) which pools data from 20 US cities

using a Bayesian hierarchical modeling strategy. This paper presents a range of results for different specifica-

M Many rescarchers present the health cffects of air pollution in terms of the effect of a 10 unit change (c.g. 10 pg m ™3 for
the case of particulate matter). We prefer to express our results as effects of one standard deviation changes since standard
deviations have the same interpretation for all pollutants. For the reader interested in translating our results, for our pollutants
one standard deviation is 3.54 ppb for SOg, 0.29 ppm for CO, 21.30 ppb for NO, 8.30 ppb for NO2, 9.15 ppb for O3z, 4.86
micrograms per m3 for PMo.5_10 and 8.75 micrograms per m3 for PMo.5.
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tions, but overall find positive and statistically significant associations between pollutants and mortality. For
instance, for their baseline model they conclude: ”Overall, we found that a 10 g m™2 increase in [particulate
matter| is associated with an estimated 0.48% increase in mortality (95% interval: 0.05 , 0.92)”. A point
to note here is that, even though results are ”positive and significant” in the sense that the point estimate
is positive and the 95% interval does not include zero, the effect of particulate matter is very imprecisely
estimated. Hence, even without Bayesian model averaging, this extensive study finds it hard to estimate the

effect of air pollution on health precisely.

4 Conclusion and Discussion

The main objective of this paper was to carry out an empirical investigation of the effects of air pollutants
on mortality using a hitherto largely unanalyzed and extensive data set and an appropriate econometric
methodology that takes into account the uncertainty about precisely which explanatory variables should be
included in the analysis. Our main empirical finding can be summarized thus: Point estimates of the effect of
numerous air pollutants on mortality all tend to be positive, albeit small. However, when model uncertainty
is accounted for in the analysis, measures of uncertainty associated with these point estimates become very
large. Indeed they become so large that the hypothesis that air pollution has no effect on mortality is a
plausible one. On the basis of these findings, we definitely recommend against the use of point estimates
from time series studies for setting regulatory standards for air pollution exposure, at least in our Toronto
case study.

A further purpose of this paper was to investigate whether interactions between different pollutants
or between various pollutants and meteorological variables may determine air pollution-mortality effects.
Before carrying out the empirical analysis, we argued that such interactions have been largely overlooked
in the literature and are of potentially great importance. However, our empirical results indicate that these
interactions are not so important, at least for the data set under consideration.

We stress that these findings do not necessarily imply that air pollution has no adverse effects on health
(or the corollary, that air pollution abatement and regulatory policies should not take into account non-
mortality related effects such as potential impacts on asthma and other respiratory illnesses). Rather, our
results indicate that there is no reliable statistical evidence for a link between air pollution and mortality. Part
of this finding may be attributed to the standard criticisms of time series studies involving daily mortality
measures (i.e. the so-called “ecological fallacy” and the fact that such studies will, at best, measure only

short term air pollution effects). Kunzli et al (2001) argue that time series studies will underestimate the
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effect of air pollution on health for these reasons, and thus, strongly recommends the use of cohort studies.
Discussant comments on Dominic, Samet and Zeger (2000) provide a useful summary of these criticisms,
along with a response by the authors in favor of time series studies. In defence of their position, they stress
that time series studies have been used extensively to determine pollution standards for exposure. If for
no other reason than for the design of air quality regulations (the implementation of which incurs immense
economic costs), it is important that researchers use appropriate statistical methods to estimate air pollution
impacts. Indeed, proper treatment of model uncertainty should be an essential part of any statistical method.

Furthermore, all of the models in this paper allow for all explanatory variables to enter in a linear fashion.
It is possible that significant health effects only occur when air pollution levels increase beyond a threshold.
If this threshold is sufficiently high, then linear models may miss important health effects. The evidence on
whether thresholds exist in air pollution-mortality relationships is mixed (see Dominici, Daniels, Zeger and
Samet, 2002 and Pope, 2000). Nevertheless, its is an important topic for future research. Given uncertainty
about what might trigger threshold effects (e.g. is it due to the average level of a certain pollutant over
several days? The interaction between two pollutants? A cumulative buildup of pollutants over many days?
A single high pollution level?), the use of Bayesian model averaging is called for.

In this paper, we have presented empirical work relating to a particular environmental problem. However,
a subsidiary aim of this paper has been to sell an econometric methodology to researchers working on a
wide variety of problems in environmental economics. Uncertainty over which model is the appropriate
one pervades many empirical applications in this field. As this paper has shown, fundamental empirical
results can be sensitive to the treatment of model uncertainty. Ignoring this issue can lead the researcher
seriously astray. Fortunately, Bayesian model averaging allows for a formal treatment of model uncertainty.
Implementation of Bayesian model averaging, albeit more difficult than simply running a regression, is not
too difficult and should be well within the abilities of applied economists. In short, this is a practical,

relatively simple, econometric methodology well-suited for and immensely important for applied work.
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6 Data Appendix

In this study, we use daily data on mortality, pollutants and meteorological variables from 1992-1997. We
discuss each of these in turn. The chosen time span was dictated by the fact that mortality data was only
available through 1997 and regular collection of data on some of the key pollutants only began in 1992.

Mortality Data

The mortality data was provided by the Toronto Department of Public Health and covers all deaths in
the Metro Toronto area (i.e. the municipalities of Toronto, Etobicoke, York, North York, East York and
Scarborough). The data contain total daily deaths and deaths by various disease categories. Of these, we use
the variables, total deaths, deaths due to diseases of the circulatory system and deaths due to diseases of the
respiratory system. For reasons of confidentiality, if the number of deaths in any disease category is between
1 and 4 the precise value is not reported. In the data used here, this suppression of information only occurs
with deaths due to diseases of the respiratory system and helps motivate our focus on total mortality. When
we ran our programs using respiratory deaths (results not reported in this paper since they were similar to
those found using total mortality), we coded all suppressed values as the average of 1 and 4 (i.e. 2.5).

Weather Data

Hourly data on the following climate variables was provided by Ontario Climate Centre at Environment

Canada from their Pearson International Airport monitoring station:

e Pressure (0.01 kilopascals).

Temperature (0.1 degrees C).

Relative humidity (%).

Total cloud amount (tenths).

Precipitation (0.1 mm). Note: this variable is a daily total.
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e Visibility (0.1 km).

e Wind direction (10s of degrees). Note: this variable is transformed into a 1-8 scale in the standard way

(see, e.g., Delfino et al, 1994, page 22).

e Wind speed (km per hour).

There are very few missing values in the hourly data. These are replaced by a simple average of values
for the hours before and after the missing value. To create daily data from this hourly data, we simply take
a daily mean. Empirical results using daily maxima are very similar.

Pollution Data

Hourly data on the following air pollution variables was provided by the Air Monitoring Section of the

Ontario Ministry of Environment:

e SOy (ppb).

NO (ppb).

NOz (pph).

NOX (ppb).
e COH = coefficient of haze (0.1 COH/1,000 ft.)

e CO (ppm).

O3 (ppb).

We average data from the six monitors which have nearly complete data for 1992-1997. These mon-
itors are widely dispersed across Metro Toronto: In downtown Toronto (Bay/Grosvenor), Scarborough
(Lawrence/Kennedy), North York (Yonge/Finch), Etobicoke (Elmcrest Rd.), Etobicoke (Evans/Arnold) and
York (Clearview/Keele). Missing values are handled in the same manner as for the weather variables. There
are relatively few missing values with the worst monitor having 2% of hourly observations missing.

To create daily data from this hourly data, we simply take a daily mean. Empirical results using daily
maxima are very similar.

Daily averages for airborne particulate matter were provided by the Analysis and Air Quality Division

of Environment Canada. Fine particulate matter (PMs5) is defined as being less than 2.5 micrograms

26



while coarse particulate matter (PMz5_19) is defined between 2.5 and 10 micrograms. For the years 1992-
1994 the only available monitor was at Bay/Wellesley. For 1996-1997 the only available monitor was at
Evans/Arnold. For 1995, data from both monitors were available. This overlap year was used to correct for
the small difference in means between the two monitors.

Missing values are a serious problem in most studies involving particulate matter since the standard
approach in the U.S. is to sample every sixth day. Our data set is of better quality, providing roughly one
observation every three days. Nevertheless, 66.29% of our raw daily observations are missing. In order to
provide estimates of the missing observations, we follow a procedure similar to that of Delfino et al (1994).
In particular, using the particulate matter values which are not missing, we run a regression using relevant
explanatory variables. We then use the values of the explanatory variables on the missing days and estimated
regression coefficients, to predict particulate matter values for days for which data are missing. Following
Delfino et al (1994), we use daily means and maximums of all the pollution and weather variables listed
above as explanatory variables. Delfino et al (1994) suggest a particular nonlinear transformation of some
of the key variables, but we find that simply adding squares of all explanatory variables provides a better
fit. For PMsy5 the resulting regression has an R? of 0.72 while for PMs5_19 the R? is 0.50. Note that
the resulting fitted values for the particulate matter data contain information from other pollutants and
weather variables. However, most of the explanatory power comes from variables that are not included in
the mortality regressions. In particular, visibility, wind direction and the coefficient of haze provide most of

the explanatory power in the regressions where the particulate matter variables are the dependent variables.

7 Technical Appendix

We implement Bayesian model averaging using the approach outlined in Fernandez, Ley and Steel (2001b),
using the MC? algorithm developed in Madigan and York (1995). The reader is referred to these papers (see
also Hoeting et al, 1999) for details beyond those presented in this appendix.

We have data for ¢ = 1,..,7 days'? and denote data on the dependent variable (mortality) by y =
(1, ..,y7) . All the potential explanatory variables (including lags) are stacked in a 7' x K matrix X. We
have r =1, .., R models, denoted by M,. These are all Normal linear regression models which differ in their

explanatory variables,

y=ar+ X0, +e¢ (A.1)

2When p lags arc included in the model, we proceed conditionally upon p initial observations and, hence, y1 will actually be
the pt" day of January, 1992.
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where 7 is a T x 1 vector of ones , X, is a T x k, matrix containing some (or all) columns of X. The
T—vector of errors, ¢, is assumed to be NV (OT, UQIT) where O7 is a T'—vector of zeros and I is the T' x T
identity matrix. Note that we are assuming all models contain an intercept.

The models are thus defined by their choice of explanatory variables (i.e. by the choice of X,.). The
standard approach to Bayesian model averaging assumes different models are defined by the inclusion or
exclusion of each variable. This leads to 2% models. If K is at all large, the enormous number of potential
models imposes commensurately enormous computational demands. It is worth noting that these compu-
tational demands help motivate our choice of the Normal linear regression model. Other work with daily
mortality counts often uses Poisson regression methods, but this would greatly add to the computational
burden (unless approximations were used). Our total mortality data has mean 46.9, standard deviation 9.2,
minimum 23, maximum 82 and a histogram which looks Normal. The considerations suggest that the costs
associated with working with a Normal model are small (i.e. our dependent variable takes on so many values
and has a roughly bell-shaped histogram that its discrete distribution can be very well approximated by a
continuous Normal distribution).

We use a Normal-Gamma natural conjugate prior with hyperparameters chosen in the objective fashion
described in Fernandez, Ley and Steel (2001b). To be precise, for the error variance we use the standard

noninformative prior:

p(o) o —. (A.2)

o
We standardize all the explanatory variables by subtracting off their means and dividing by their standard

deviations. Once this is done, it makes sense to use a flat prior for the intercept:

p(a) ox 1. (A.3)

For the slope coeflicients we assume a g-prior of the form:

B, ~N (ok o2 [g,,X,{X,,]*l) . (A4)

It remains only to specify g,. Fernandez, Ley and Steel (2001b) investigate the properties for many possible
choices for g,, including values which lead to posterior model probabilities which have properties similar to
commonly-used information criteria (e.g. the Schwarz or Hannan-Quinn criteria). Their recommendation is

to choose:
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1 2
gT_{ = if <K (A.5)

£ if T > K?
The empirical results in this paper use this choice for g,., although the other choices they consider lead to
qualitatively similar results.

The resulting posterior for (3, follows a multivariate t-distribution with mean:
E (B,|Data, M,) = 3 = QX |y, (A.6)
covariance matrix:

Ust —

—@ (A7)

var (B,.|Data, M,.) =

and 7 = N degrees of freedom. Furthermore,

Q=11+g) XX,

and

o Y Peyt gt (- Ta) (v~ )

- 3

v

where

Px, =1Ir — X, (X/X,)"' X..
The posterior model probability for model r in the Bayesian model averaging is:

Ep _I

gr \° gr - - ’
pOnIDate) = (=20 ) " |y Py L =) - o) (A8)

where ¢ is a constant which is the same for all models. The fact that Zle p (M,|Data) =1 can be used to

evaluate c.
Our parameters of interest measure the cumulative effect of a pollutant on mortality and these are a
linear function of the regression coefficients. Hence, the previous equations are all that is required to carry
out Bayesian model averaging as given in (2.1).
If the number of models, R, is relatively small (A.8) can be evaluated for every possible model and
Bayesian model averaging can be implemented directly. In traditional applications of Bayesian model aver-
= 9K

aging, R (i.e. every possible explanatory variable can either be included or excluded). For cases where
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K > 20 direct implementation of Bayesian model averaging is computationally infeasible. Accordingly, we
adopt the MC? described in Madigan and York (1995). This is a Metropolis algorithm which is very simple
to implement. In particular, if the current model in the chain is M, then a candidate model, M, which is
randomly (with equal probability) selected from the set of models including M, and all models containing
one more or one less explanatory variable (i.e. the algorithm randomly either adds or subtract one column

from X,), is drawn. M is accepted with probability:

. p (M;|Data)
1,
o { 'p (M, Data)

If Mj is not accepted then the chain stays with M,. It can be shown that the relative frequency that each
model is drawn will converge to its posterior model probability.

To monitor convergence of the chain we calculate the probability of the ten most probable models drawn in
two different ways. First, we calculate them analytically using (A.8). Then we approximate this probability
using output from the MC? algorithm. When these probabilities are the same to three decimal places, we
deem convergence to have taken place. The number of draws required for the various models considered

varied from 1,000,000 to 2,000,000.
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