
This version is available at https://strathprints.strath.ac.uk/38969/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
A surprising steric effect on a tandem cycloaddition/ring-opening reaction: rapid syntheses of difluorinated analogues of (hydroxymethyl)conduritols†

John Fawcett,a Andrew C. Moralee,a Jonathan M. Percy,a,b Vittoria Salafia,a Mark A. Vincentb and Ian H. Hilliera

a Department of Chemistry, University of Leicester, University Road, Leicester, UK LE1 7RH.
E-mail: jmp29@le.ac.uk
b Department of Chemistry, University of Manchester, Manchester, UK M13 9PL.
E-mail: Ian.Hillier@man.ac.uk

Received (in Cambridge, UK) 27th January 2004, Accepted 13th March 2004
First published as an Advance Article on the web 8th April 2004

Diffuorinated analogues of (hydroxymethyl)conduritols can be synthesised from selected furans and a difluorinated dienophile in two reaction steps.

The literature contains many examples of fluorinated building blocks.1 These are either commercially available compounds or readily prepared intermediates that can be manipulated using the important C–C bond-forming reactions of modern synthetic chemistry. Few, if any, of these building blocks allow the rapid synthesis of complex fluorine-containing molecules.

We identified cyclic carbonate 4 as a side product during the formation of endo and exo cycloadducts 2 and 3 via the furan Diels–Alder reaction of rare difluorinated dienophile4 in the presence of sub-stoichiometric amounts of stannic chloride (Scheme 1).1

We were interested in this product, as it complements species we could obtain by either hydrostannylation/stannate ring opening according to Lautens4 or via procedures in which sulfur electrophiles and reductive desulfonation/ring-opening chemistry are used.5 Furthermore, though the yield is modest, the product arises in a single reaction step from cycloaddition, followed by highly controlled ring-opening, so the sequence is particularly concise. We therefore decided to investigate further and found that 4 (26%) replaced exo-3 when the cycloaddition was carried out with stoichiometric Lewis acid.1 However, non-aqueous work-up of a reaction solution led to the exclusive presence of 2 and 3, as revealed by 19F NMR: we were only able to observe 4 after aqueous work-up. Substituted 2-methyl-, 2,3-dimethyl- and 2,5-dime-thyfurans behaved quite differently, failing to afford cyclic carbonates. Instead, only exo cycloadducts were obtained and all attempts to force the reactions led to decomposition.

There is little in the literature that might help to predict how the Lewis acid would bind to 2/3. A search of the literature revealed only 5- and 6-membered chelates involving stannic chloride. Denmark and Fu have obtained structures for bis-phosphoramide ligand–stannic chloride complexes,6 though these include much larger rings. We therefore attempted to grow crystals of a complex between the reactive exo-3 and stannic chloride. Diffusion of hexane into a DCM solution of 3 and stannic chloride at room temperature produced air-sensitive crystals of 7a (Fig. 1), which were transferred rapidly to the cold diffractometer stage.3 Clearly, this cannot be an intermediate on a direct pathway to 4. Scheme 2 presents our proposed mechanism for the formation of 4.

To trigger ring opening, stannic chloride must first bind to the bridging ether oxygen, which is a poor donor. To compensate for this, 6-membered chelate formation (in 5a) involving carbonyl and ether oxygen donors, which is impossible from the endo cycloadduct, is proposed. Bridge cleavage, which is strain relieving, may then occur reversibly. The proposed intermediate 6a is transformed into 4 when hydrolysis removes it from the equilibrium.7

We have used electronic structure calculations to investigate a number of aspects of this proposed mechanism.8 Minima and transition structures were calculated at the B3LYP/6-31G** level, including the effect of the solvent, DCM, using the polarisable continuum model (PCM). These calculations first showed that 5a and 7a differed in energy by only 21 kJ mol–1 in favour of 7a, thus confirming the proposed equilibrium between these structures. The proposed intermediate 6a was confirmed as an energy minimum and the transition structure linking it to reactant 5a was located, the barrier being 80 kJ mol–1. This transition structure showed a high degree of bond cleavage (C–O = 2.06 Å), suggesting that the effect of methylation at the bridgehead position is steric rather than electronic.† To investigate this further, the calculations were repeated for the methylated molecules. We now find 7b to be more stable than 5b by 42 kJ mol–1, with the barrier to the formation of...
6b (from 5b) being increased to 95 kJ mol⁻¹. Both these effects will contribute to the observed failure to yield the corresponding carbonate from the 2-methyl (or 2,3-dimethylfuran) cycloadducts.

Cyclic carbonate 9 and endo-cycloadduct 8§ were obtained in moderate yield from the reaction between 1 and 3-bromofuran, a seldom-used diene. Exposure of 5a (0.22 g, 34%) and cyclic carbonate 3 (0.14 g, 26%) as cubic crystals; mp 61–62 °C; R₁ (20% diethyl ether in light petroleum) 0.05; (Found: C, 45.66; H, 3.70; C₁₀H₈NO₃ requires: C, 45.46; H, 3.82%); von (film/cm⁻¹): 3538 br (OH), 2996m (C=H), 1846m (C=O), 1750m (C=O), 1473w (C=C), 1315m (C=O), 1220m (C=O), 1183m (C=O); δ₂ (300 MHz, CDCl₃): 6.15–6.09 (1H, m), 5.90–5.91 (1H, m), 5.48 (d, J = 4.0, 4.6–6.1 (1H, m), 4.42–4.32 (2H, m), 3.66 (1H, br s), 3.14 (3H, J = 7.2 Hz); δ₂ (75 MHz, CDCl₃): 164.2 (d, J₂ₓ₋ₓ = 1.7), 151.3, 133.5 (d, J₂ₓ₋ₓ = 5.9, 1.4), 122.0 (d, J₂ₓ₋ₓ = 1.1), 116.6 (d, J₂ₓ₋ₓ = 256.6, 250.9), 80.6 (d, J₂ₓ₋ₓ = 31.1, 12-3.5), 76.8 (d, J₂ₓ₋ₓ = 23.5, 21.0 Hz), 64.2, 13.7; δ₂ (282 MHz, CDCl₃): –115.3 (1F, d, J₂ₓ₋ₓ = 261.5), –125.9 (1F, d, J₂ₓ₋ₓ = 261.5, 13.4 Hz); m/e (CI): 283 (100%, [M + Na⁺]).

‡ Crystal data for 6 (mp not measured): C₁₀H₈Br₂F₂NO, M = 579.8; monoclinic; a = 10.4879(11), b = 18.8071(19), c = 7.10293(11) Å, β = 102.902(2)°, Z = 2; U = 2060.4(4) Å³; for space group P2₁/n, Z = 4, µ(Mo-Kα) = 1.802 mm⁻¹; 10 971 reflections measured, 4033 unique (R₁ = 0.0261), which were used in all calculations; R₁ = 0.0278, wR₂ = 0.0651; the final wR(F²) = 0.0639 (all data). For 8 (mp 71–72 °C): C₁₀H₈Br₂F₂NO, M = 398.2; monoclinic; a = 11.66609(6), b = 8.035(6), c = 18.3629(14) Å, β = 102.7150(10)°, U = 1682.9(2) Å³; for space group P2₁/n, Z = 4, µ(Mo-Kα) = 2.486 mm⁻¹; 12 743 reflections measured, 3310 unique (R₁ = 0.0269), which were used in all calculations; R₁ = 0.0417, wR₂ = 0.0914; the final wR(F²) = 0.0888 (all data). For 9 (mp 123–125 °C): C₁₀H₈Br₂F₂NO, M = 343.1; monoclinic; a = 7.0091(8), b = 11.5134(13), c = 14.90059(12) Å, β = 94.40(4)°, U = 1199.62(2) Å³; for space group P2₁/n, Z = 4, µ(Mo-Kα) = 3.474 mm⁻¹; 8057 reflections measured, 4055 unique (R₁ = 0.0236), which were used in all calculations; R₁ = 0.0328, wR₂ = 0.0768; the final wR(F²) = 0.0768 (all data). CCDC 229969–229971. See http://www.ccdc.cam.ac.uk/structures for crystallographic data in CIF or other electronic format.

Notes and references

2 For the only previous example of a difluorinated alkenoate dienophile, see J. Leroy, H. Molines and C. Wakselman, Top. Curr. Chem., 1997, 193, 4715.

3 P. J. Crowley, A. C. Moralee, J. M. Percy and N. S. Spencer, Synlett, 2000, 1737.

7 A referee suggested an alternative explanation in which water reacts with 8, which then progresses irreversibly. We cannot disprove this suggestion, but must point out that our hypothesis does appear to be strongly supported by the computational findings.

