Inactivation of jNK ACtivity by mitogen-activated protein kinase phosphatase-2 in Eahy926 endothelial cells is dependent upon agonist-specific jNK translocation to the nucleus

Robinson, C. and Sloss, C.M. and Plevin, R.J. (2001) Inactivation of jNK ACtivity by mitogen-activated protein kinase phosphatase-2 in Eahy926 endothelial cells is dependent upon agonist-specific jNK translocation to the nucleus. Cellular Signalling, 13 (1). pp. 29-41. ISSN 1873-3913 (https://doi.org/10.1016/S0898-6568(00)00121-2)

Full text not available in this repository.Request a copy

Abstract

We have investigated the termination of agonist-stimulated mitogen-activated protein (MAP) kinase activity in EAhy926 cells by MAP kinase phosphatase-2 (MKP-2). In cells expressing either wild-type (WT) or catalytically inactive (CI)-MKP-2, there was no significant differences in TNFα-stimulated JNK or p38 MAP kinase activity, however hydrogen peroxide (H2O2)-stimulated JNK activity was substantially reduced in WT-MKP-2 expressing clones and enhanced in cells expressing CI-MKP-2. Consistent with these findings, we observed substantial nuclear translocation of JNK occurred in response to H2O2 but not TNFα. Using a phosphospecific anti-JNK antibody, we found that TNFα-stimulated JNK activity was associated principally with the cytosol while in response to H2O2, JNK activity was found within the nucleus. These results show that the role of MKP-2 in terminating JNK activity is determined by the translocation of JNK to the nucleus, which is under agonist-specific regulation and not a universal cellular response to stimulation.

ORCID iDs

Robinson, C., Sloss, C.M. and Plevin, R.J. ORCID logoORCID: https://orcid.org/0000-0002-7849-1220;