Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Effects of orientation, stress and exposure time on short intergranular stress corrosion crack behaviour in sensitised type 304 austenitic stainless steel

Rahimi, Salaheddin and Marrow, James (2012) Effects of orientation, stress and exposure time on short intergranular stress corrosion crack behaviour in sensitised type 304 austenitic stainless steel. Fatigue and Fracture of Engineering Materials and Structures, 35 (4). pp. 359-373. ISSN 8756-758X

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Intergranular stress corrosion cracking (IGSCC) in austenitic stainless steels occurs at susceptible grain boundaries after sensitisation. In this study, the effects of test duration, static stress (applied and residual) and microstructure orientation on the developed populations of short crack nuclei are reported for a sensitised type 304 austenitic stainless steel in an acidified potassium tetrathionate (K2S4O6 ) solution. The crack populations were analysed using the Gumbel distribution method, showing an increase in the characteristic crack lengths with increasing time and grain size. There is a weak, but measurable effect of stress on crack length. Tensile stress increases crack growth and compressive residual stresses introduced by surface machining are shown to be beneficial. A significant dependence on sample orientation is observed and this cannot be explained in terms of the bulk microstructure properties or characteristics, which showed no significant variations.