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Abstract: In this paper, we evaluate efficient implementations of a broadband beamforming structure, that permits to
project the data onto subspaces defined by the principle components of the array data. This optimum but computationally
expensive approach is approximated in the frequency domain by processing in independent frequency bins. The later
is computationally optimal, but suffers from spectral leakage. We show that this problem persists even if the frequency
resolution is increased, and that the worst case performance depends on the available degrees for freedoms only. Further,
an oversampled subband scheme is proposed, which sacrifes some computational complexity but has a considerably

improved and controllable worst case performance.
1. INTRODUCTION

Broadband beamforming is a technique that uses both
temporal and spatial information to separate signal com-
ponents impinging on an array of M sensors from vari-
ous directions of arrival (DOA). This finds applications
in radar and sonar [12], or in communications to deal
with multiple users operating within the same frequency
band [6]. Amongst a larger number of choices for differ-
ent structures [12, 6], the type of broadband beamformer
considered here is a processor for the received M channel
data, which can filter out signal components that occupy a
certain subspace in the spatio-temporal domain by means
of principle components.

To achieve high spatial and temporal resolution, large
array dimensions and time windows have to be employed,
thus resulting in a considerable complexity. A number
of techniques have been developed to either reduce the
number of degrees of freedom (DOF) and therefore the
adjustable parameters in the system [13], or find numeri-
cally efficient schemes such as DFT based beamforming
in the frequency domain {10, 1, 5] or subband process-
ing [16]. The aim of this paper is to survey and com-
pare computationally inexpensive broadband beamform-
ing methods similarly to the ones in [1, 16] based on DFT
and subband processing, for the above M-channel sub-
space filter.

Both frequency domain and subband methods apply a
filter bank to the sensor data. The traditional choice of fil-
ter bank is a discrete Fourier transform (DFT), whereby it
is hoped that in the Fourier domain interactions between
different frequency bins can be neglected. This approx-
imation as an “independent frequency bin”(IFB) proces-
sor offers computational optimality but also suffers from
drawbacks due to the DFTs relatively poor frequency res-
olution. A second choice of filter banks are oversampled
filter banks (OSFBs) that sacrifice some computational
savings but avoid the drawbacks of the IFB-KLT by em-

ploying filters with a high frequency selectivity [3].

The paper is organised as follows. Sec. 2 will in-
troduce the considered broadband beamformer or mul-
tichannel filtering structure, and the calculations of the
processor matrix via principle components of the data. A
frequency domain implementation analogous to e.g. {1]
is performed in Sec. 3, highlighting the approximations
made. Sec. 4 proposes a subband based beamformer,
which in structure has similarities to the frequency do-
main processor. This subband processor sacrifices some
computational complexity to avoid drawbacks of the fre-
quency domain processor, which will be demonstrated
when assessing the worst-case performance of these pro-
cessor structures in Sec. 5.

2. OPTIMUM BROADBAND BEAMFORMING

2.1. Structure

The considered broadband beamforming structure is de-
picted in Fig. 1. The M channel input signal is passed
into tapped delay lines (TDL), which in Fig. 1 are la-
belled as serial-to-parallel (s/p) conversion blocks. At the
output of these TDLs, a vector x;[n] of spatio-temporally
sampled data,

sfn] = [l xTln] - x5 _fnl] with (1)
XEL[n] = [mm[n] wm[n_l] waL[n_L+1]]

is passed to a processor matrix T. Before entering the
processor matrix, the data vector x1[n] is generally deci-
mated by a factor N, 1 < N < L, where L is the length
of the TDL. This’decimation is part of the serial to par-
allel (s/p) converters in Fig. 1 which are shown in detail
in Fig. 2(a). After the multiplication with T}, the reverse
process takes place, whereby the expansion by IV and the
multiplexing given in Fig. 2(b) define a parallel-to-serial
(p/s) converter.
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The processor matrix T is select optimally in terms
of filtering based on principle components [9]. For this,
first the covariance matrix of the input data vector, Ry =
E{xi1[v] - xH[v]} is calculated, where £{-} is the expec-
tation operator. The eigenvalue decomposition of Ry gives

RiQ=QA @

where Q is the modal matrix and A a diagonal matrix
containing the eigenvalues. Some of the eigenvalues and
their accompanying eigenvectors in Q represent struc-
tured data, and by isolating selected eigenvalues, different
principle components of the data can be separated. This
is performed via a modified low rank approximation T
of the covariance matrix, which is given by

T =Q-0(A)-QY 3)

where ©(+) is a binary threshold operator.

2.2. Gain Response

To characterise the broadband beamformer described in
Sec. 2.1, a gain response is calculated in the following.
This response represents the absolute gain and phase that
the processor imposes on a narrowband signal of nor-
malised angular frequency §2 impinging from a direction
of arrival (DOA) ¥ onto an M -element array. The sen-
sor data can be simulated by means of a steering vector
s(,9),

1
e—Jsin(6)Q

s(,9) = : ) (C))

e-j(M—i) sin(6)Q

which expresses the impinging wavefront’s delay to hit
the different sensors of an array that is assumed to be lin-
ear and uniformly spaced. At the processor output an op-
timal narrowband beamformer, equivalent to a matched
filter for the steering vector, is applied. The flow graph for
obtaining this gain response A(e’?, 1) is given in Fig. 3.
Note that for a trivial processor Tt = I forming an iden-
tity matrix, this is an optimal narrowband beamformer
with A(e??,9) = sH(Q,9) - s(Q,9) = M.

Fig. 1. Flow graph of a broadband beamforming proces-
sor for M -channel data.

"
iN x][\'] XI[V] _f?'lv\ g
T
;
x, [v] @ A xnl
N
(a) (b) ~

Fig. 2. (a) Demultiplexer or (s/p) block and (b) multi-
plexer or (p/s) block constructed from delay elements,
decimators (} V) and expanders (1 N).
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Fig. 3. Gain response A(e/%?,19) of processor; the proces-
sor block incorporates demultiplexers and multiplexers.

While generally it is not straightforward to determine
A(e’®,9) analytically, the simple case of an undecimated
processor with N = 1 reduces to

A@,0) = —-(s%(Q,9) - FQ)-T; - F(Q).

s(Q,9)) - eI DR 5

L
L

where FH(0) describes the response of the multiplexing
and demultiplexing according to Fig. 2.

3. DFT-BASED BROADBAND BEAMFORMING

3.1. Structure

The application of the discrete Fourier transform (DFT)
to a broadband beamforming structure is very popular as
it promises computational advantages over the time do-
main approach [10, 1, 5]. For a frequency domain pro-
cessor, the TDL in the M demultiplexing (s/p) blocks of
Fig. 1 are subjected to a DFT of length L. This situation
is shown in Fig. 4. The signals at the output of the DFT
blocks can be denoted as vector xgg—1[V/],

Xga-1[v] = B - x1[v] (6)
with
B = diag{Tprr, ToFT, -~ TOFT} - (D

The matrices Tprr € CE*L are DFT matrices scaled by
V'L such that Tppr is unitary, hence B~! = BH.

By a suitable permutation of the data vector, the in-
put to the frequency domain processor can be attained as
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Fig. 4. Flow graph of a frequency domain processor.

indicated in Fig. 4,
Xga-11 = P - Xpa-1 - ®)

where P performs the permutation. Using this permuted
data vector, the resulting covariance matrix Rgg—11 =
E{xiﬂ,_n . xf}bvn} has the structure

Roo Rip R
Ry, Ri1 Rria
Ry = . ]
Rozra1 Ry Rrai

In (9), R;; is an M x M correlation matrix between
frequency bins 7 and j of different sensor signals .

The covariance matrix Ryq_y; can be related to the
covariance matrix in the time-domain case by (6) as

R_n=P -B-R;-BY.PH | (10)

Due to the unitarity of P - B, Reg—11 and R have iden-
tical eigenvalues [7]. If the eigenvalues of Req_y1 are
subjected to the same binary thresholding as in the time
domain processor matrix in (3), then the frequency do-
main processor with matrix Tgg_y; = PBTBYPH dif-
fers structurally from the time domain processorin Sec. 2,
but can implement the identical functionality.

3.2. Approximations

In general, frequency domain methods neglect any in-
teraction between adjacent frequency bins. Therefore in
DFT-based beamforming, a computational advantage a-
rises as within each frequency bin only a narrowband
beamformer is operated independently of the ones oper-
ated in other frequency bins [1]. For the covariance ma-
trix of the resulting processor, the restriction to infra-bin
processing results in a modification of the matrix struc-
ture in (9),

Roo Orp ... Or
Or Ry OL

Rip, = . . . , (D
O, Oy Rr_1,1-1

i.e. correlations between different bins ¢ # j are set to
Z€ero.

The eigenvalue decomposition of Rig, can be reduced
to solving eigenvalue problems for the L sub-matrices

Y2 ?f@ O
C Y@ K(z)@
OY“@ ?K.@@

analysis filter bank

synthesis filter bank

Fig. 5. K channel analysis and synthesis filter bank with
decimation and expansion by N < K.

Fig. 6. Equivalent filter bank representation to Fig. 5
with polyphase analysis and synthesis matrices, H(z)
and G(z).

R, ; independently, with the result that an identical block-
diagonal structure is achieved for the processor matrix
T, containing L X L sub-matrices. The subscript used
in the above quantities refers to the processing in inde-
pendent frequency bins (IFB).

Although the approximations in (11) make the IFB-
processor optimal in the sense of computational complex-
ity, spectral leakage will create a problem whenever input
data does not exactly lie on a frequency bin. The effect
will be highlighted in Sec. 5.

4. SUBBAND-BASED BROADBAND
BEAMFORMING

Interpreting the L-point DFT in Sec. 3 as an L chan-
nel filter bank of poor selectivity, spectral leakage can
be suppressed by employing filters with better frequency
domain properties. This leads to the subband-based struc-
ture discussed below.

4.1. Oversampled Frequency Bands

A general K-channel filter bank with analysis and syn-
thesis of a fullband signals is shown in Fig. 5. In the anal-
ysis bank, after filtering with bandpass filters Hy(z) the
resulting subband signals have reduced bandwidth and
can therefore be decimated by N < K. If the Hy(z) are
selective enough, only a low aliasing level is incurred in
the decimation process. A fullband signal can be recon-
structed by expanding the subbands signals by N, and
combining them after interpolation filtering with G (z),
as shown in Fig. 5. An equivalent filter bank representa-
tion by polyphase analysis and synthesis matrices H(z)
and G(z) is shown in Fig. 6, which offers advantages
for circuit analysis and numerically efficient implemen-
tation [2, 11, 3, 14].
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Perfect reconstruction X () = 2= X (z) can be con-
veniently established if the polyphase analysis matrix is
paraunitary, i.c. H(z)-H(z) = I where H(z)
In this case a perfectly reconstructing synthesis filter bank
is given by setting G(z) = H(2), as can be easily ver-
ified from Fig. 6. In practice, the perfect reconstruction
condition can be relaxed by allowing small errors in the
reconstruction. This error, together with the level of alias-
ing, can be controlled by the filter bank design [8].

By oversampling N < K aliasing in the subbands
is suppressed, at the expense of introducing redundancy
into the subband domain. This however is advantageous
in many applications, as the redundancy lies in the over-
lapping region of the analysis filters Hi(z). This fact
enables to treat different subbands independently, and de-
couples the problem of processing between adjacent sub-
bands as found in the critically sampled case N = K [4]
or the DFT-structure in Sec. 3.

4.2. Beamforming Structure

Substituting the filter bank blocks in Fig. 6 into the DFT-
based broadband beamforming processor of Sec. 3, the
subband structure in Fig. 7 emerges. All M sensor signals
are decomposed by analysis filter banks, while the dual
operation is performed at the processor output. The signal
vector Xgyup,[V] fed into the processor matrix is given by

xuulv] = ollxalv] -+ xgalv]]  with  (12)

xi[V] = [xoul] xiilv] - xM—l,k[”” ,
X;I;L’k[l/] [Zmk[V] Tmilv—1] -+ Tmrlv—Ls+1]].

Since the subband signals are relatively broadband due
to decimation, TDLs of length L, have been applied to
each subband. The value for L, can be selected consider-
ably shorter than L in the fullband case, but for identical
number of degrees of freedom (DOF) compared to the
standard broadband processor in Sec. 2, L, = L/K can
be set.

The covariance mamx of the data vector xeu[v] in
} € ZMKL.xMKL

(12), Rgup, = E{xsub ~x5ub +, takes

= HH(z"1).

the structure

RO’O Rl,O 1{K——I,O
R Ry, Ry
Rsup = . . . (13)
LRo, k1 Rika Rk k1

The sub-matrices R;;, 7,7 € {0; K — 1} are spatio-
temporal covariance matrices between the ith and jth sub-
band. If the filter banks have a high frequency selectivity
and the resulting subbands only overlap with one adja-
cent band [4], then R; j ~ Opr,V|i — j| > 1 except for
the corner matrices Ry, x—1 and Rg_ 0.

4.3. Approximation

The computational efficiency of the proposed subband-
based processor is not only due to neglecting the spatio-
temporal sub-matrices R ; ~ Oz V|i — j| > 1, butalso
all sub-matrices off the block diagonal of Rg,. In retain-
ing only the matrices Ry , for & = 0(1)K ~ 1, an error
would be incurred if the filter banks were critically dec-
imated. This error-free approximation of omitting non-
zero correlation terms has been similarly noted for sub-
band adaptive filtering where the redundancy in employ-
ing oversampled filter banks (OSFB) relieves from the
use of adaptive filters between adjacent subbands [4, 14,
15].

The subband-based processor matrix is built from the
reduced subband covariance matrix

R, = diag{Ro, R11, -~ Rx—1,k-1}  (14)
via an eigenvalue decomposition (2) and the binary thresh-
olding of the eigenvalues in (3), yielding the matrix Ty,
employed in Fig. 7. Since the eigenvalue decomposition
of Rey, comes down to K eigenvalue decompositions of
Ry, i, the processor matrix Ty

Tswp = diag{Tsub,Ow Tsub,l: ce Tsub,K—l} (15)

has a block diagonal structure.

Fig. 7. Flow graph of a subband-based broadband beamforming processor.
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Fig. 8. Gain response of an inverse time domain proces-
sor adjusted to suppress a complex harmonic.

5. PERFORMANCE

To assess the performance of the three discussed broad-
band beamforming structures, Sec. 5.1 introduces the test
modalities, while the results are discussed in Sec. 5.2.

5.1. Simulation Scenario

The data of the simulation is produced by a complex har-
monic of frequency Q impinging from a DOA of 9 = 30°
onto an M = 8 element array. For this data, covariance
matrices are calculated for all cases. A broadband beam-
forming processor matrix is calculated for each structure
such that the complex harmonic should be suppressed as
best as possible. This is achieved by setting the corre-
sponding eigenvalue in (3) to zero and all other eigenval-
ues to unity.

In the absence of noise, for the ideal time domain pro-
cessor a single DOF would suffice to perfectly null out
the signal of interest. An example for the resulting gain
response in this case is given in Fig. 8. Hence the focus
is on how IFB- and subband-processors can cope with
this situation. The IFB-processor is characterised by an
L = 16 point DFT, with a characteristic shown in Fig. 9.
The filter bank employed for the subband-processor has
K = 8 channels decimated by N = 7 depicted in Fig. 10.
Subsequently, to achieve the same number of DOFs as the
IFB-processor, Ly = 2.

5.2. Results and Discussion

The result of modifying the frequency between the 2nd
and 4th bin frequency of the employed DFT is shown in
Fig. 11. If the frequency of the complex harmonic co-
incides with a bin frequency at @ = {§=, {win} infi-
nite attenuation is achieved. For values in between the
bin frequencies, spectral leakage occurs and neighbour-
ing frequency bins are required to be adjusted in order to
achieve a reasonable attenuation.

With a single eigenvalue considered, and hence a sin-
gle DOF, only the closest frequency bin is active and can
contribute toward attenuating the signal. Similarly, for
two considered eigenvalues, the two adjacent bins con-
tribute and improve performance over the single DOF

(6 /{dB]

IF,

(] 01 02 0.3 0.4 05 06 07 08 09 1
normalised angular frequency Q /&

Fig. 9. Filter bank characteristic of a 16-point DFT.
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Fig. 10. Filter bank characteristic of a subband system
with K = 8 channels decimated by N = 7.

case. It becomes clear that for optimal suppression, in
the worst case all frequency bins need to be active, i.e. all
L = 16 temporal DOFs will be taken up to suppress a
single complex harmonic, as opposed to a single DOF
required by the time domain processor. Vice versa, if
only one (two) DOF is available in the IFB processor to
suppress a single complex harmonic, then in the worst
case the achieved attenuation will only be 5 dB (14.5 dB).
This worst case occurs for complex harmonics whose fre-
quency lies exactly between DFT bin frequencies.
Increasing the length L in the DFT of the IFB pro-
cessor might be believed to influence the precision and
therefore the worst-case scenario. However, independent
of the number of frequency bins, the chance for signal

gain/[dB]

1 eigenvalue
&~ 2 eigenvalues

0.35

0.2 0.25 03
normalised anguiar frequency Q / rt

Fig. 11. Gain of the inverse IFB-KLT processor at a vari-
able specified frequency Q and fixed DOA considering
one or two eigenvalues.
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Fig. 12. Gain value as in Fig. 11, but for both L = 16
and L = 32.
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Fig. 13. Gain of the inverse subband-KLT processor con-
sidering one or two eigenvalues, adjusted to suppress a
complex harmonic at a frequency varying over the Oth
and 1st subband; the filter bank characteristic is under-
laid.

components to fall in between bins does not decrease. In
fact, doubling the frequency bins L = 32 and using a sin-
gle eigenvalue, it is obvious from Fig. 12 that there is no
change in the worst case attenuation over the earlier case
L = 16. There is no performance gain achieved when
increasing the DFT length, unless the signal’s frequency
is known a priori.

Similarly, the subband-processor is tested by vary-
ing the frequency of a complex harmonic across a sub-
band edge. The results in Fig. 13 indicate that for nulling
a complex harmonic outside the overlap region between
two subbands, considering a single eigenvalue in the con-
struction of the inverse processor matrix is sufficient. The
achievable gain is limited by the stopband attenuation
of the filter bank, as clearly the performance curve in
Fig. 13 follows the stopband ripple of the filter bank. In
the overlap region, the eigenvalue has to be assigned to
one subband, while the remaining subband will still pass
the signal and therefore deteriorate the system perfor-
mance. However, if two eigenvalues are permitted, then
the processor can be correctly adjusted using one DOF in
each subband.

Therefore, the Subband-KLT very well approximates
the ability of the TDL-KLT to express a signal subspace
using up as few DOFs as possible. For a complex har-
monic, in most cases one DOF will be sufficient, and a
maximum of two DOFs be required in the worst case.

If the frequency bands are reasonably selective and the
overlap regions narrow, then in only few cases a signal
component will cover the subband edges and require the
latter consideration of eigenvalues in both adjacent sub-
bands. The worst case attenuation performance, here -
55 dB for the two eigenvalue case, depends only on the
filter bank’s stopband attenuation and is independent of
the number of employed frequency bands. If two eigen-
values are permitted to suppress a complex harmonic, the
worst case attenuation can, different from the IFB-KLT,
always be controlled by appropriate filter design [8].

6. CONCLUSIONS

This paper has discussed an A/ channel filter structure for
broadband beamforming, which can project onto or away
from signal subspaces by means of principle components
of the data. A DFT-based structure commonly employed
in broadband beamforming has been used to find a nu-
merically efficient implementation of this beamformer in
form of an IFB processor. Further, a subband based pro-
cessor has been proposed to bypass some drawbacks of
this IFB processor.

By analysing the worst case performance, it has been
shown that the performance of the IFB-beamformer is in-
dependent of the number of frequency bins but always
limited by the number of DOFs that can be dedicated to
process a specific subspace. In the subband case, the per-
formance is limited by the stopband attenuation of the
employed filter banks, which however can be controlied
by design to be just good or poor enough for the specific
application.

In general, the subband-processor forms a link be-
tween the costly time-domain processor and the poorly
performing IFB approach. In the extreme case, the num-
ber of subbands in the subband processor can be lowered
to K = 1 resulting in the time domain methods. Sim-
ilarly, by setting X = L and making the analysis fil-
ters poorly frequency selective, the IFB processor results.
Hence, the proposed subband processor permits to trade-
off between the disadvantages of costly time domain and
poorly performing IFB beamformers.
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