Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Benzyl(trimethylsilyl)amidolithium: Structural studies by ab initio MO and X-ray crystallographic methods, and comparison with the known structures of dibenzyl and bis(trimethylsilyl) analogues

Armstrong, D R and Baker, D R and Craig, F J and Mulvey, Robert and Clegg, W and Horsburgh, L (1996) Benzyl(trimethylsilyl)amidolithium: Structural studies by ab initio MO and X-ray crystallographic methods, and comparison with the known structures of dibenzyl and bis(trimethylsilyl) analogues. Polyhedron, 15 (20). pp. 3533-3542. ISSN 0277-5387

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Prompted by its excellent nucleophilic properties in organic synthesis, benzyl(trimethylsilyl)amidolithium, a new commercial lithium amide reagent, has been subjected to a detailed structural study. X-ray crystallographic studies have revealed that in the absence of solvent ligands, it is trimeric with a classical, shield-shaped N3Li3 ring core, the amido substituents of which are organized in a cisoid manner. Solvation by hexamethylphosphoramide causes it to break down to a dimer, having a familiar lozenge-shaped N2Li2 ring core. These structures are compared with previously reported dibenzylamidolithium and bis(trimethylsilyl)amidolithium analogues. Primarily with a view to shedding further light on the role of Li ... benzyl interactions in these structures, ab initio MO geometry optimizations have been carried out on model monomeric fragments. Short Li ... C (benzyl) contacts observed in the crystal structure of benzyl(trimethylsilyl)amidolithium are retained in the theoretical monomer, although their presence appears to be dictated more by steric factors than by electronic deficiencies of the Li-delta+ centre. Copyright (C) 1996 Elsevier Science Ltd