# PROGRESS IN OCEANOGRAPHY, CAMEO SPECIAL ISSUE

# Ecosystem limits to food web fluxes and fisheries yields in the North Sea simulated with an end-to-end food web model.

Michael R Heath

University of Strathclyde, Marine Population Modelling Group, Department of Mathematics and Statistics, Livingstone Tower, Glasgow, G1 1XP, UK e-mail: m.heath@strath.ac.uk

Tel: +44 (0)141 548 3591 Fax: +44 (0)141 548 3345

# SUPPLEMENTARY MATERIAL

# Technical description of the ecosystem model.

# **1. Physical structure**

The model resolved 2 water column layers, and an underlying sediment layer in the vertical plane, because seasonal vertical layering has a defining influence on the food web fluxes of shelf seas (Tett, 1981). Fluxes of material across the internal interface between the water column layers were represented as being due to sinking, vertical advection and mixing, and also implicitly due to the activity of vertically migrating grazers. Vertical exchanges of dissolved inorganic components between the sediment layer and the overlying water layer were represented as a diffusive process, whilst the flux of particulate matter between the sediment and overlying water was due to sinking, predation on benthos by water-column living fauna, and filter-feeding by benthos.

# 2. The state variables

## 2.1. Primary producers

Phytoplankton were represented by a single guild which utilized both nitrate and ammonia but with different preferences. Nutrient uptake by phytoplankton guilds was constrained to the surface layer and formulated to depend on depth mean daily irradiance, and the mass of phytoplankton was subject to vertical exchange between layers by sinking, advection and mixing. Losses of phytoplankton were due to advection out of the model, predation by zooplankton, and a density-independent lysis rate. Phytoplankton biomass lost due to lysis was transferred to the suspended detritus state variable.

# 2.2. Zooplankton

Two guilds of zooplankton were represented. Herbivorous zooplankton (conceptually taxa ranging from micro-zooplankton to copepods) fed on phytoplankton and

suspended detritus. Carnivorous zooplankton (conceptually large predatory crustaceans and soft-bodied invertebrate predators) fed on herbivorous zooplankton and larval fish.

Both zooplankton guilds were represented as depth integrated populations, implying that their active migration behaviour outweighed any vertical exchanges due to physical advection and mixing. Herbivorous zooplankton distributed their feeding activity between the surface and deep layers in proportion to the vertical distribution of their prey. Both herbivorous and carnivorous zooplankton excreted to the surface and deep layer ammonia pools in proportion to layer thicknesses, but defecated material was transferred directly to the deep water detritus layer, reflecting the rapid sinking rate of zooplankton faecal particles.

# 2.3. Benthos

Benthic fauna were resolved into suspension/deposit feeding. and carnivorous/scavenge feeding guilds. The suspension/deposit feeders consumed suspended detritus and phytoplankton from that part of the water column assigned for them to filter, and sedimentary detritus. The carnivorous/scavenge guild fed on suspension/deposit feeders and the corpses of other guilds produced by densitydependent mortality (see later). In the model, both benthos guilds defecated detritus to the sediment layer and excreted ammonia to the deep layer of the water column. Both the suspension/deposit feeding and carnivorous/scavenge benthos guilds were potentially subject to harvesting by fishing.

# 2.4. Fish

Fish were resolved into pelagic and demersal guilds. Each guild had an internal demographic structure represented by an early life history stage (eggs and larvae), which for convenience is hereafter referred to here as "larvae", and a post-larval/mature stage which is referred to here as "adults". Adults were potentially subject to harvesting by fishing whilst larvae were not. Within a set interval of days each year, adult fish shed a percentage of their biomass per day which was transferred directly to larvae as a representation of spawning. Within a different set interval of days each year, a percentage of the biomass of larvae per day recruited to the adults.

Fish larvae (of both pelagic and demersal fish) fed on herbivorous zooplankton, and were preyed upon by carnivorous zooplankton and the adults of pelagic and demersal fish. Adult pelagic fish fed on herbivorous and carnivorous zooplankton, and larval fish. Adult demersal fish fed on carnivorous zooplankton, but not herbivorous zooplankton, all types of benthos, adult and larval fish, fishery discards and corpses (see later). Adult pelagic and demersal fish were preyed on by the top predator guild in the model.

Demersal fish excreted ammonia and defecated detritus only to the deep water column layer, whilst pelagic fish and all larval fish excreted to the surface layer and defecated to the deep water column layer.

## 2.5. Top predators

The top predators in the model were conceived as birds and mammals, and represented by a single demographically unstructured guild. The top-predator guild fed on adult pelagic and demersal fish, discards from the fisheries (see later), and corpses. Top predators excreted to the surface layer and defecated detritus to the deep layer.

## 2.6. Detritus and dissolved inorganic components

The model resolved ammonia and nitrate concentrations in the water column and sediment pore water layers, and various forms of organic detritus. Transformations between detritus and inorganic nitrogen in the real world are due to bacterial activity, but the model did not resolve the biomass of bacteria explicitly. To do so effectively, would require representation of, at least, carbon and oxygen dynamics in order to meaningfully articulate bacterial dynamics. The activities of bacteria with respect to nitrogen were therefore represented by three rates of exchange between the non-living components; 1) mineralization of detritus to ammonia, 2) nitrification of ammonia to nitrate, and 3) denitrification of nitrate to nitrogen gas. Denitrification was effectively a sink term for nitrogen in the model since there was no return process of nitrogen fixation.

Suspended detritus in the surface and deep layers originated from the defecation of zooplankton, fish and top predators, and the lysis of phytoplankton cells. Suspended detritus had a sinking rate expressed as a proportion per day transferring from the surface to deep layer, and from the deep layer to the sediment, and was also exchanged vertically by mixing and advection. For settlement from the deep layer to the sediment the proportion per day was also inversely related to the vertical mixing rate so that a smaller proportion settled to the sediment in more strongly mixed systems, as a caricature of the re-suspension of sediment in regions of strong tidal flow or during meteorological mixing events.

Detritus in the water column was consumed by bacterial mineralization and converted to ammonia, and grazed by herbivorous zooplankton. In the deep layer, suspension/deposit feeding benthos could also feed on suspended detritus in a layer of a given thickness above the seabed. Detritus was assumed to be uniformly distributed through the deep layer, so only a fraction of the deep layer suspended detritus was available to the benthos.

Sediment detritus was also consumed by the suspension/deposit feeding benthos guild, and mineralised by bacteria to ammonia. Ammonia produced in the seabed by mineralization and nitrate produced by nitrification of ammonia, contributed to dissolved pools in the pore-water layer. Exchange of ammonia and nitrate between the sediment pore-waters and the deep water column layer was then governed by the sediment-water diffusion coefficient acting on the concentration gradient across the interface.

Additional forms of detritus were included in the model to represent the corpses of the larger taxa in the food web (carnivorous benthos and plankton, fish, and birds/mammals). Fishery discards (see later) formed a food resource in the water column for birds/mammals and demersal fish, and were transformed at a fixed proportion per day to corpses. Corpses were also produced as a result of density-dependent mortality, and were consumed by carnivorous benthos, adult demersal fish and birds/mammals, and a temperature dependent proportion of their mass per day was converted to sediment detritus.

## **3.** Biological rate processes

## 3.1. Bio-geochemical rates

Rates of mineralization, nitrification and denitrification were defined by proportions of substrate consumed per day. Temperature has a profound effect on bacterial processes, so these rate parameters were temperature dependent according to a  $Q_{10}$  relationship (see later).

#### 3.2. Grazer uptake rates

The mass flux from prey to predator per unit time ( $\Omega$ , mMN m<sup>-2</sup> d<sup>-1</sup>) was given by a Michaelis-Menten relation.:

$$\Omega = \frac{predator . prey . pref_{prey-predator} .U_{max(predator)}}{prey + (h_{predator} .(T_l))}$$
(1)

The term *prey* referred to the abundance (mMN m<sup>-2</sup>) of a given prey guild in a depth layer of thickness T<sub>1</sub>, whilst *predator* referred to the abundance (mMN m<sup>-2</sup>) of a predator guild. The half-saturation concentration  $h_{predator}$  (mMN m<sup>-3</sup>) was considered to be independent of temperature, and the same for all prey of a given predator. The term  $U_{max(predator)}$  (mMN. mMN<sup>-1</sup>.d<sup>-1</sup>) represented the maximum uptake rate of all prey classes combined by the predator guild, and was assumed be dependent on sea temperature according to a Q<sub>10</sub> function for all predators except birds/mammals.

The relative contributions of prey classes to uptake by a predator guild was set by the preference parameter  $pref_{prey-predator}$ . The value of the parameter represented the proportion of total uptake if all prey classes were present at equal concentration. Hence the sum of all prey preferences for a given predator was always unity. Note that this differs from formulations for representing weight-specific uptakes of multiple prey types by predators at a species level. When multiple prey classes are available to a species the effective concentration of prey against which the degree of saturation is judged, is the sum over all prey classes, with a preference term to scale the electivity of the predator of each prey class. Hence, a super-abundance of one prey class inhibits the uptake of others, for example:

$$\frac{\Omega}{predator} = \frac{prey. \ pref_{preyr} \ U_{\max(predator)}}{\sum (prey.pref_{prey}) + h_{predator}}.$$
(2)

In the model described here, however, the taxonomic range implicit in each guild was such that whilst a predator guild might rely on multiple prey guilds, there should be many species within the predator guild whose diets would not overlap. Hence, there was no *a priori* reason to suppose that uptake of one prey guild should markedly influence the uptake of others. For this reason, the uptake rates of different prey by a predator guild were represented as being independent and additive.

#### 3.3. Autotrophic uptake functions

Primary production was represented by the light and concentration-dependent uptake rate of nutrient (nitrate or ammonia) by the phytoplankton guild ( $\Omega$ , mMN.m<sup>-2</sup>.d<sup>-1</sup>). Exactly as for the uptake of prey by predators, the mass of nutrient taken up per unit time was represented by a Michaelis-Menten relation with no interaction between nutrients (Dortch, 1990). However, in addition, nutrient uptake was scaled by the depth mean daily irradiance, such that uptake was zero at zero irradiance and increasing lineally to a maximum rate at a saturating value of daily depth mean irradiance ( $L_{max}$ ). Hence:

$$\Omega = Min \left\{ 1.0, \frac{L}{L_{\max}} \right\} \cdot \frac{phytoplankton \cdot nutrient \cdot pref_{nutrient - phytoplankton} \cdot U_{\max(phytoplankton)}}{nutrient + (h_{phytoplankton} \cdot T_l)}$$
(3)

As for the heterotrophic uptake processes, the parameter  $U_{max}$  (d<sup>-1</sup>) was assumed to be temperature dependent and the half-saturation term h<sub>phytoplankton</sub> was assumed to be independent of nutrient type. There is ample support from analyses of field data on depth integrated carbon and nitrogen assimilation for expressing biomass-specific uptake by coarse functional group of phytoplankton in terms of linear functions of depth averaged irradiance (Platt *et al.*, 1990; Forget et al., 2007; Lund-Hansen and Sorensen, 2009).

Autotrophic fixation of atmospheric nitrogen by cyanobacteria was disregard. In some ecosystems, direct nitrogen fixation can be a significant input to the nitrogen budget but the available evidence suggest that this is probably not important in the North Sea (Lipshultz and Owens, 1996).

#### 3.4. Metabolism

Food ingested by heterotroph guilds was either assimilated or was passed to detritus and ammonia. The proportion assimilated was governed by a constant assimilation coefficient. Half of the non-assimilated food was assumed to be lost to detritus and half to ammonia. In addition to this feeding dependent ammonia excretion, all heterotroph guilds excreted a proportion of their biomass per day as ammonia, as a caricature of basal metabolism. The proportion excreted per day was assumed to be temperature dependent according to a  $Q_{10}$  function for all categories of heterotrophs except the top predators.

#### 3.5. Density dependent mortality

Density-dependent mortality terms were included for carnivorous zooplankton, carnivorous/scavenge feeding benthos, larval and adult fish, and birds/mammals, and represented by quadratic functions defining a flux of biomass to corpses (flux of guild j to corpses =  $z_j.j^2$ ). Hence the weight specific mortality rate increased linearly with guild biomass. Conceptually, the density-dependent mortality was regarded as a caricature of constraints on survival due to limitations of space (e.g. limited sheltering habitat for benthic fauna), or the attraction of predators to spatial aggregations of prey (e.g. attraction of piscivoious birds to schools of pelagic fish), or outbreaks of disease or parasitism at high population densities (e.g. high incidence of *Ichthyophonus hoferi* in herring during period of high stock density, Mellergaard and Spanggaard, 1997). In the model, the biomass killed by density dependent mortality was retained within the food web by allowing for scavenge feeding on corpses by carnivorous/scavenging benthos, adult demersal fish and birds/mammals.

#### 3.6. Temperature dependency

For the uptake and metabolic parameters identified as being subject to temperature dependency, the response was represented by a  $Q_{10}$  function:

$$k = \exp\left(\frac{1}{10}(T - T_R) \log_e Q_{10} + \log_e k_{TR}\right)$$
(4)

where  $T_R$  was the reference temperature and  $k_{TR}$  was the value of the parameter k at the reference temperature. Parameters assumed to be sensitive to temperature were all uptake rates, background metabolism, and bacterial mineralization, nitrification and denitrification.

#### 3.7. Fishing

Two key effects of fishing on the food web were represented in the model, in addition to the obvious mortality inflicted on fish and the removal of biomass from the system. Targeted catches of fish and benthos by four fishing 'fleets' were expressed as proportions of biomass captured per day (harvest rates). The four fleets were pelagic and demersal fisheries which targeted adult pelagic and demersal fish respectively, and two types of shellfish fisheries which targeted the suspension/deposit and carnivorous/scavenge feeding benthos. The two additional effects of fishing were bycatching and discarding. By-catch refers to the collateral mortality inflicted on nontarget guilds by a fishery, and was represented in the model as by-catch of benthos guilds by the demersal fishery. Discarding includes a) accidental or intentional (due to quota restrictions) spillage of marketable targeted catch from nets during gear recovery, b) throwing overboard of dead biomass of un-marketable species, and under-size or low value individuals of otherwise marketable species, and c) offal removed from the fish during gutting operations which is thrown overboard. In addition, though not normally regarded as a discard, fish which escape through net meshes but are damaged and do not survive, are functionally equivalent to discards. These components of the catch formed a potential food resource in the model for demersal fish, birds and mammals, and were also converted to corpses at a fixed daily rate representing settlement to the seabed.

There are few data on the collateral mortality rates inflicted on benthos fauna due to demersal fishing. As a rough estimate a collateral harvesting rate of 0.001-times the demersal fish harvesting rate was applied to both the suspension/deposit and carnivorous benthos guilds to represent by-catch. 100% of this by-catch was considered to be rejected at sea, so was retained in the model as discards. The by-catch in the model also functionally included fauna which are damaged and killed by the fishing gear but not actually retained by the net, which could be the case for many fragile benthic taxa.

Discarding of targeted guilds was represented as either a fixed or a variable proportion of catch. Fisheries for pelagic fish and benthos are generally highly targeted, that is, the catching process discriminates by virtue of location, fishing gear or technology (e.g. sonar) between species and, in the case of pelagic fish, sizes which are of marketable value. In addition, catches of pelagic fish are usually landed in bulk and not sorted or graded at sea. Hence, as a starting assumption the proportion of catch discarded from these fisheries was expected to be relatively low and constant. In contrast, fisheries for demersal fish are generally indiscriminate and the catch is intensively sorted and graded at sea. There is clear evidence that the proportion by weight of large fish in the North Sea demersal community has declined over time since the 1970's in parallel with stock abundances (Greenstreet et al. 2010). Hence, we would expect the proportion by weight of discardable fish (smaller than the

minimum landing size) to have increased in inverse relation to biomass. The discarded fraction of demersal fish catches ( $disc_d$ ) was therefore parameterized as a function of adult demersal biomass:

$$disc_d = exp(-dfd.Fd)$$
<sup>(5)</sup>

where dfd was a constant (dfd<1) and Fd was the biomass of adult demersal fish.

Catch which was not discarded was referred to as 'landings' and was removed as an export flux from the model.

# 4. Physical exchanges

# 4.1. Vertical exchange across the interface between water column layers

<u>V</u>ertical exchanges between layers in the water column were represented as a simple diffusive process in the model. Diffusive processes produce net fluxes of material only when there is a concentration gradient across the interface between neighboring compartments, with the flux determined by a diffusion coefficient ( $m^2 d^{-1}$ ). However, since the model only simulated the difference in concentration between the two layers, and not the gradient across the interface, the length term over which the gradient acted was specified as a separate time series parameter.

# 4.2. Vertical exchange across the sediment water interface

As for vertical exchanges in the water column,\_the material flux of dissolved constituents across the sediment-water interface in the model was given by product of the concentration difference between sediment pore waters and the overlying water column layer, a diffusion coefficient, and an assumed length scale of action. Pore water concentrations were given by assuming that the mass of state variable in the sediment was uniformly distributed over the sediment layer which was of fixed thickness and uniform porosity (proportion by volume of water in the sediment).

# 4.3. Horizontal advection

Horizontal advection was represented by a volume inflow to the surface and deep layer (parameterised as a proportion of layer volume inflowing per day). To conserve volume, a balancing outflow was assumed from each layer. All horizontal inflow to the surface layer was assumed to exit via the surface layer. However, a proportion (between 0 and 1) of the inflow to the deep layer was potentially allowed to upwell vertically into the surface layer, augmenting the surface layer outflow. All components which were subject to vertical diffusion (nitrate, ammonia, suspended detritus, and phytoplankton) were also eligible to be advected vertically and horizontally. Ocean boundary concentrations (mM N.m<sup>-3</sup>) in inflows to the system were set as external values.

# 4.4. River inputs

Nutrient and detritus inputs from rivers were confined to the surface layer and represented by a volume inflow (proportion of surface layer volume per day) with given concentrations of nutrient load (mM N.m<sup>-3</sup>). The volume input from rivers

generated a corresponding outflow volume from the surface layer, which was added to that generated by horizontal advection.

#### 4.5. Atmospheric input of nutrient

Deposition of nitrate and ammonia to the surface layer from the atmosphere was represented by an external driving dataset of fluxes (mM N.m<sup>-2</sup>.d<sup>-1</sup>)

#### 5. References

- Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series 61, 183-201.
- Forget, M.-H., Sathyendranath, S., Platt, T., Pommier, J., Vis, C., Kyewalyanga, M.S., Hudon, C., 2007. Extraction of photosynthesis-irradiance parameters from phytoplankton production data: demonstration in various aquatic systems. Journal of Plankton Research 29, 249-262.
- Greenstreet, S. P. R., Rogers, S. I., Rice, J. C., Piet, G. J., Guirey, E. J., Fraser, H. M., Fryer, R. J., 2010. Development of the EcoQO for the North Sea fish community. ICES Journal of Marine Science (DOI 10.1093/icesjms/fsq156).
- Lipshultz, F., Owens, N.J.P., 1996. An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean. Biogeochemistry 35, 261–274.
- Lund-Hansen, L.C., Sorensen, H.M., 2009. Parameterisation of surface irradiance and primary production in Arhus Bay, SW Kattegat, Baltic Sea. Hydrobiologia 620, 173-179.
- Mellergaard, S., Spanggaard, B., 1997. An *Ichthyophonus hoferi* epizootic in herring in the North Sea, the Skagerrak, the Kattegat and the Baltic Sea. Diseases of Aquatic Organisms 28, 191-199.
- Platt, T., Sathyendranath, S. Ravindran, P., 1990. Primary production by phytoplankton: analytic solutions for daily rates per unit area of water surface. Proceedings of the Royal Society of London Series B 241, 101-111.
- Tett, P., 1981. Modelling phytoplankton production at shelf sea fronts. Philosophical Transactions of the Royal Society of London A 302, 605-615.

State variables and notations. Units of all variables are mMN.m<sup>-2</sup> in a given depth layer.

| Term                                 | Symbol         |
|--------------------------------------|----------------|
| Surface detritus                     | Ds             |
| Deep detritus                        | D <sub>d</sub> |
| Sediment detritus                    | D <sub>x</sub> |
| Fishery discards                     | $D_{f}$        |
| Corpses                              | D <sub>c</sub> |
| Surface ammonia                      | As             |
| Deep ammonia                         | Ad             |
| Sediment ammonia                     | A <sub>x</sub> |
| Surface nitrate                      | Ns             |
| Deep nitrate                         | N <sub>d</sub> |
| Sediment nitrate                     | N <sub>x</sub> |
| Surface phytoplankton                | Ps             |
| Deep phytoplankton                   | P <sub>d</sub> |
| Mesozooplankton                      | Н              |
| Carnivorous zooplankton              | С              |
| Suspension/deposit feeding benthos   | Bs             |
| Carnivorous/scavenge feeding benthos | Bc             |
| Pelagic fish larvae                  | FLp            |
| Demersal fish larvae                 | FLd            |
| Pelagic fish adults                  | Fp             |
| Demersal fish adults                 | Fd             |
| Birds/mammals                        | J              |

Static physical setup parameters.

| Parameter                  | Symbol           | Description                                   |
|----------------------------|------------------|-----------------------------------------------|
| Thicknesses of the surface | Ts               | Vertical distance between the sea surface and |
| water column layer         |                  | the base of mixed layer                       |
| Thicknesses of the deep    | T <sub>d</sub>   | Vertical distance between the base of mixed   |
| water column layer         |                  | layer and the seabed                          |
| Thickness of benthic       | T <sub>bl</sub>  | Bottom boundary layer (contained within the   |
| feeding layer              |                  | deep layer) in which benthos have access to   |
|                            |                  | phytoplankton and suspended detritus (must    |
|                            |                  | be less than T <sub>d</sub> ).                |
| Thickness of the sediment  | T <sub>x</sub>   | Vertical depth over which sediment            |
| layer                      |                  | constituents are assumed to be well mixed     |
| Thickness of the sediment- | $T_{Vx}$         | Boundary layer thickness at the sediment-     |
| water diffusion layer      |                  | water interface, over which the diffusion     |
|                            |                  | coefficient between deep water and sediment   |
|                            |                  | pore water is assumed to act                  |
| Sediment-water diffusivity | V <sub>x</sub>   | A constant coefficient governing the vertical |
|                            |                  | flux between the sediment pore water and      |
|                            |                  | the deep water layer.                         |
| Sediment porosity          | por <sub>x</sub> | Proportion by volume of water in seabed       |
|                            |                  | sediment.                                     |

Time dependent external driving variables.

| Term                        | Symbol             | Description                                                     |
|-----------------------------|--------------------|-----------------------------------------------------------------|
| Sea surface irradiance      | L(t)               | A daily resolution time series cosine function                  |
|                             |                    | varying between a winter minimum (L <sub>w</sub> ) on           |
|                             |                    | day 0 and 360, and a summer maximum $(L_s)$                     |
| <b>TT T T T T T T T T </b>  |                    | on day 180                                                      |
| Vertical attenuation        | Kvert(t)           | A daily resolution time series of the log-e                     |
| (base a)                    |                    | coefficient of vertical attenuation. The                        |
| (base e)                    |                    | the mean light intensity in the surface layer                   |
|                             |                    | is then derived from the integral of the light                  |
|                             |                    | profile $(I_{x,y} = I_{z} e^{-kvert.depth})$ ie                 |
|                             |                    | $(((1/kvert))^*e^{-kvert.0}) - ((1/kvert)^*e^{-kvert.thick_s})$ |
|                             |                    | )/thick s                                                       |
| Temperature in each         | TZ(t)              | A daily resolution time series of sea                           |
| vertical layer of the model |                    | temperatures for each model layer.                              |
| Vertical diffusion          | V(t)               | A daily resolution time series of either a                      |
| coefficient                 |                    | constant value or a cosine function                             |
|                             |                    | representing the seasonal variation of                          |
|                             |                    | vertical diffusion coefficient.                                 |
| Vertical diffusion length   | $T_{Vsd}(t)$       | The length scale over which vertical                            |
| scale                       |                    | diffusion acts at the interface between water                   |
|                             |                    | column layers – a derived function of the                       |
|                             | <b>D</b> (4)       | magnitude of the diffusion rate.                                |
| Freshwater input to the     | $\mathbf{K}(t)$    | A daily resolution time series of the volume                    |
| surface layer from fivers   |                    | rivers as a proportion of surface layer                         |
|                             |                    | volume per day                                                  |
| Horizontal advection        | L(t)               | A daily resolution time series or constant                      |
| inflow from the ocean to    | 3(-)               | value of the inflow volume to the surface                       |
| the surface layer           |                    | layer as a proportion of surface layer volume                   |
| 2                           |                    | per day                                                         |
| Horizontal advection        | I <sub>d</sub> (t) | A daily resolution time series or constant                      |
| inflow from the ocean to    |                    | value of the inflow volume to the deep layer                    |
| the deep layer              |                    | as a proportion of deep layer volume per day                    |
| Proportion of deep inflow   | $p_{Id}$           | A daily resolution time series or constant                      |
| volume upwellng into the    |                    | value. The proportion of deep inflow which                      |
| surface later               |                    | is not upwelled, is treated as an outflow from                  |
| Harizantal autflaw valuma   | O(t)               | The deep layer<br>Proportion of surface layer advacted          |
| from the surface layer to   | $O_{s}(t)$         | horizontally out of the system each day =                       |
| the ocean                   |                    | $I(t) + n_1 * (T_1 * I_1(t))/T_1 + R(t)$                        |
| External input of nitrogen  | $[]_{A}(t)$        | Mass of nitrate and ammonia introduced to                       |
| to the surface laver from   |                    | the system from the atmosphere (moles N $m^{-2}$                |
| the atmosphere              |                    | $d^{-1}$ ) as a constant or time series                         |
| Concentrations of nitrogen  | $[]_{R}(t)$        | Nitrate and ammonia concentrations                              |
| in river waters flowing     | /                  | (molesN m <sup>-3</sup> ) in river waters as a constant or      |
| into the surface layer      |                    | time series                                                     |

| Ocean boundary             | $[]_{bs}(t)$         | Nitrate, ammonia, detritus, and                      |
|----------------------------|----------------------|------------------------------------------------------|
| concentrations of          | and                  | phytoplankton were susceptible to horizontal         |
| horizontally advected      | [] <sub>bd</sub> (t) | advection and ocean boundary                         |
| components in the surface  |                      | concentrations (molesN m <sup>-3</sup> ) of each are |
| and deep layers            |                      | required as a constant or time series                |
| Pelagic fish spawning      | Pspn(t)              | A daily resolution time series of the                |
| pattern                    |                      | proportion of adult pelagic fish biomass shed        |
|                            |                      | as eggs per day                                      |
| Demersal fish spawning     | Dspn(t)              | A daily resolution time series of the                |
| pattern                    |                      | proportion of adult demersal fish biomass            |
|                            |                      | shed as eggs per day                                 |
| Pelagic fish recruitment   | Prec(t)              | A daily resolution time series of the                |
| pattern                    |                      | proportion of larval pelagic fish biomass            |
|                            |                      | recruiting to the adult pelagic stock per day        |
| Demersal fish recruitment  | Drec(t)              | A daily resolution time series of the                |
| pattern                    |                      | proportion of larval demersal fish biomass           |
|                            |                      | recruiting to the adult demersal stock per day       |
| Fishery extraction rate    | $X_{Bs}$             | A daily resolution time sereies of the               |
| from benthos               |                      | proportion of benthos suspension feeder              |
| suspension/deposit feeders |                      | biomass extracted per day                            |
| Fishery extraction rate    | $X_{Bc}$             | A daily resolution time sereies of the               |
| from benthos carnivores    |                      | proportion of benthos carnivore biomass              |
|                            |                      | extracted per day                                    |
| Fishery extraction rate    | $X_{Fp}$             | A daily resolution time sereies of the               |
| from pelagic fish          |                      | proportion of pelagic fish biomass extracted         |
|                            |                      | per day                                              |
| Fishery extraction rate    | $X_{Fd}$             | A daily resolution time sereies of the               |
| from demersal fish         |                      | proportion of demersal fish biomass                  |
|                            |                      | extracted per day                                    |

Static parameters of the model.

| Parameter                                                                       | Symbol              |
|---------------------------------------------------------------------------------|---------------------|
| Preference of consumer guild (x) for resource guild (y)                         | pref <sub>y-x</sub> |
| Temperature corrected weight specific maximum uptake rate (d <sup>-1</sup> ) of | U <sub>max(x)</sub> |
| resource guild (y) by consumer guild (x)                                        |                     |
| Half-saturation concentration of resource for consumer guild (x)                | h <sub>x</sub>      |
| Assimilation efficiency of heterotroph guild (x) (proportion of ingestate       | a <sub>x</sub>      |
| converted into body mass)                                                       |                     |
| Temperature corrected background metabolic rate of heterotroph guild            | e <sub>x</sub>      |
| (x) (proportion of nitrogen biomass which was converted to ammonia              |                     |
| per day).                                                                       |                     |
| I emperature corrected remineralisation of suspended detritus in the            | m <sub>s</sub>      |
| surface water column layer to ammonia, expressed as the proportion of           |                     |
| suspended detritus nitrogen converted to ammonia per day                        |                     |
| I emperature corrected remineralisation of suspended detritus in the            | m <sub>d</sub>      |
| deep water column layer to ammonia, expressed as the proportion of              |                     |
| Suspended detrifus mitrogen converted to ammonia per day                        | 100                 |
| ammonia, expressed as the properties of sediment detritus nitrogen              | $\Pi_X$             |
| converted to ammonia per day                                                    |                     |
| Temperature corrected nitrification rate of ammonia to nitrate in the           | n                   |
| surface layer of the water column expressed as the proportion of                | $\Pi_{S}$           |
| ammonia converted to nitrate per day                                            |                     |
| Temperature corrected nitrification rate of ammonia to nitrate in the           | na                  |
| deep layer of the water column, expressed as the proportion of ammonia          | τ.u                 |
| converted to nitrate per day                                                    |                     |
| Temperature corrected nitrification rate of ammonia to nitrate in the           | n <sub>x</sub>      |
| sediment pore waters, expressed as the proportion of ammonia                    | Α                   |
| converted to nitrate per day                                                    |                     |
| Temperature corrected denitrification rate of nitrate in the surface layer,     | ds                  |
| expressed as the proportion of nitrate lost from the system to nitrogen         |                     |
| gas per day                                                                     |                     |
| Temperature corrected denitrification rate of nitrate in the deep layer,        | $d_d$               |
| expressed as the proportion of nitrate lost from the system to nitrogen         |                     |
| _gas per day                                                                    |                     |
| Temperature corrected denitrification rate of nitrate in the sediment pore      | $d_x$               |
| water layer, expressed as the proportion of nitrate lost from the system        |                     |
| to nitrogen gas per day                                                         |                     |
| Death rate of phytoplankton in the surface layer, expressed as the              | X <sub>S</sub>      |
| proportion of surface phytoplankton exported to detritus per day                |                     |
| Death rate of phytoplankton in the deep layer, expressed as the                 | Xd                  |
| proportion of deep phytoplankton exported to detritus per day                   |                     |
| Density-dependent mortality rate of carnivorous zooplankton, expressed          | ZC                  |
| as the proportion of biomass exported to seabed corpses, per unit               |                     |
| Diomass, per day                                                                |                     |
| Density-dependent mortality rate of carnivorous benthos, expressed as           | $z_{Bc}$            |
| ine proportion of biomass exported to seabed corpses, per unit biomass,         |                     |

| per day                                                                    |                            |
|----------------------------------------------------------------------------|----------------------------|
| Density-dependent mortality rate of adult pelagic fish, expressed as the   | $\mathbf{z}_{\mathrm{Fp}}$ |
| proportion of biomass exported to seabed corpses, per unit biomass, per    | -                          |
| day                                                                        |                            |
| Density-dependent mortality rate of adult demersal fish, expressed as      | $\mathbf{Z}_{\mathrm{Fd}}$ |
| the proportion of biomass exported to seabed corpses, per unit biomass,    |                            |
| per day                                                                    |                            |
| Density-dependent mortality rate of birds/mammals, expressed as the        | ZJ                         |
| proportion of biomass exported to seabed corpses, per unit biomass, per    |                            |
| day                                                                        |                            |
| Sinking rate of detritus in the surface layer, expressed as the proportion | X <sub>sink_s</sub>        |
| of surface layer detritus exported per day to the deep layer               |                            |
| Sinking rate of detritus in the deep layer, expressed as the proportion of | X <sub>sink_d</sub>        |
| deep layer detritus exported per day to the sediment                       | _                          |
| Rate of conversion of fishery discards to seabed corpses                   | X <sub>disc corp</sub>     |
| Rate of conversion of seabed corpses to sediment detritus                  | X <sub>corp sed</sub>      |
| Fraction of pelagic fish catch which is discarded at sea                   | disc <sub>p</sub>          |
| Coefficient for biomass dependency of the fraction of demersal fish        | dfd                        |
| catch which is discarded at sea                                            |                            |
| Fraction of carnivorous benthos catch which is discarded at sea            | disc <sub>Bc</sub>         |
| Fraction of suspension feeding benthos catch which is not landed           | disc <sub>Bs</sub>         |

Uptake equations of the model.

| Uptake term           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uptake of ammonia     | $\Omega_{\text{As-Ps}} = \text{Min}\{1.0, L(t)/L_{\text{max}}\}.A_{\text{s}}.P_{\text{s}}.\text{ pref}_{\text{A-P}}.U_{\text{max}(\text{P})}/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| by phytoplankton      | $(P_s+(h_p,T_s))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Uptake of nitrate by  | $\Omega_{\text{Ns-Ps}} = \text{Min}\{1.0, L(t)/L_{\text{max}}\}.N_{\text{s}}.P_{\text{s}}.\text{ pref}_{\text{N-P}}.U_{\text{max}(\text{P})}/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| phytoplankton         | $(P_s+(h_p,T_s))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Uptake of surface     | $\Omega_{Ps-H} = P_s. H((pref_{P-H} . P_s + pref_{D-H} . D_s)/(pref_{P-H} . P_s + pref_{P-H})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| phytoplankton by      | $P_d$ + pref <sub>D-H</sub> $P_s$ + pref <sub>D-H</sub> $P_d$ )). pref <sub>P-H</sub> $U_{max(H)} / (P_s + (h_H, T_s))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| herbivorous-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| zooplankton           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uptake of deep        | $\Omega_{Pd-H} = P_d. H((pref_{P-H}.P_d+pref_{D-H}.D_d)/(pref_{P-H}.P_s+pref_{P-H})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| phytoplankton by      | $P_d$ + pref <sub>D-H</sub> $P_s$ + pref <sub>D-H</sub> $P_d$ )). pref <sub>P-H</sub> $U_{max(H)} / (P_d + (h_H, T_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| herbivorous-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| zooplankton           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uptake of surface     | $\Omega_{Ds-H} = D_s$ . H((pref_{P-H}, P_s + pref_{D-H}, D_s)/(pref_{P-H}, P_s + pref_{P-H})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| suspended detritus by | $P_d$ + prei <sub>D-H</sub> $P_s$ + prei <sub>D-H</sub> $P_d$ )). prei <sub>D-H</sub> $U_{max(H)} / (D_s + (n_H, I_s))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nerorvorous-          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>Zoopialiktoli</u>  | $O_{\rm D} = D_{\rm c} H(({\rm pref}_{\rm s.u.} {\rm P}_{\rm s.t.} {\rm pref}_{\rm s.u.} {\rm D}_{\rm s})/({\rm pref}_{\rm s.u.} {\rm P}_{\rm s.t.} {\rm pref}_{\rm s.u.} {\rm P}_{\rm s.t.} {\rm pref}_{\rm s.u.} {\rm P}_{\rm s.t.} {\rm P}_{\rm s.t.} {\rm pref}_{\rm s.u.} {\rm P}_{\rm s.t.} {\rm P}_{\rm s.$ |
| nhytonlankton by      | $22D_{d-H} = D_d$ . II((prop-H .I. d + prop-H .D_d)/(prop-H .I. s + prop-H)<br>P_+ pref_s y P_+ pref_s y P_1) pref_s y U m / (D_+(hy T_1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| suspension/deposit    | $\operatorname{H}_{d}$ ( $\operatorname{H}_{d}$ )))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| feeding benthos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Untake of suspended   | $\Omega_{\text{Dd},\text{Pc}} = D_{\text{d}} B_{\text{s}} \operatorname{pref}_{\text{Dd},\text{Pc}} U_{\text{max}(\text{Pc})} / (D_{\text{d}} + h_{\text{Pc}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| detritus by           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| suspension/deposit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| feeding benthos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uptake of sediment    | $\Omega_{\text{Dx-Bs}} = D_{\text{x}}$ . Bs. pref <sub>Dx-Bs</sub> . $U_{\text{max(Bs)}} / (D_{\text{x}} + h_{\text{Bs}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| detritus by           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| suspension/deposit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| feeding benthos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uptake of fishery     | $\Omega_{\text{Df-Fd}} = D_{\text{f.}} \text{ Fd. } \text{pref}_{\text{Df-Fd.}} U_{\text{max}(\text{Fd})} / (D_{\text{f}} + h_{\text{Fd.}}(T_{\text{s}} + T_{\text{d}}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| discards by demersal  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tish                  | $\mathbf{O}$ $\mathbf{D}$ $\mathbf{L}$ $\mathbf{C}$ $\mathbf{U}$ $(\mathbf{D} + \mathbf{I} / \mathbf{T} + \mathbf{T})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Uptake of fishery     | $\Omega_{\text{Df-J}} = D_{\text{f. J. } \text{pret}_{\text{Df-J}} \cup \text{max}(J) / (D_{\text{f}} + n_{\text{J.}} (1_{\text{s}} + 1_{\text{d}}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| discards by birds and |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Untake of seabed      | $O_{D-D} = D$ Ed preferre $U = \frac{1}{2} \left( D + h_{D} \left( T + T \right) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| cornses by demersal   | $22D_{c-Fd} = D_{c} \cdot I \cdot d \cdot prop_{c-Fd} \cdot O_{max(Fd)} / (D_{c} + n_{Fd} \cdot (I_{s} + I_{d}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fish                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uptake of seabed      | $\Omega_{\text{De Be}} = D_{\text{c}} B_{\text{c}} \text{ pref}_{\text{De Be}} U_{\text{max}(\text{Be})} / (D_{\text{c}} + h_{\text{Be}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| corpses by            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| carnivorous/scavenge  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| feeding benthos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uptake of             | $\Omega_{\text{Bs-Bc}} = \text{Bs. Bc. pref}_{\text{Bs-Bc}}.U_{\text{max(Bc)}} / (\text{Bs+h}_{\text{Bc}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| suspension/deposit    | - X / X <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| feeding benthos by    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| carnivorous/scavenge  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| feeding benthos       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Uptake of              | $\Omega_{\text{H-C}} = \text{H. C. pref_{\text{H-C}}} U_{\text{max}(\text{C})} / (\text{H+h}_{\text{C}}(\text{T}_{\text{s}}+\text{T}_{\text{d}}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| herbivorous-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zooplankton by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| carnivorous            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zooplankton            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uptake of pelagic      | $\Omega_{FLp-C} = FLp. C. pref_{FLp-C} U_{max(C)} / (FLp+h_C(T_s+T_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fish larvae by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| carnivorous            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zooplankton            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uptake of demersal     | $\Omega_{\text{FLd},C} = \text{FLd}_{C} C \text{ pref}_{\text{FLd},C} U_{\text{max}(C)} / (\text{FLd}+h_{C}(T_{s}+T_{d}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| fish larvae by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| carnivorous            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zoonlankton            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Untake of              | $O_{\text{HELE}} = H FL p \text{ prefuse} \left[ \int_{-\infty}^{\infty} \int_{-\infty}$ |
| herbivorous-           | $22H-FLp$ II. I.D. proth-FLp. $O \max(FLp) / (II + IIFLp. (IS + Id))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| zoonlankton by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| pelagic fish larvae    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Untake of              | $O_{\text{HP}} = H$ En prefue $II_{\text{HP}} / (H+h_{\text{P}} (T+T))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| berbivorous            | $22_{H-Fp} = 11.1 \text{ p. } p101_{H-Fp} \cdot 0_{max}(Fp) / (11 + 11_{Fp} \cdot (1_{S} + 1_{d}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| zoonlankton by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zoopialikioli Uy       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Untalia of             | $O = C E_{\mathbf{p}} \operatorname{prof} U / (C \pm \mathbf{h} (T \pm T))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | $22_{C-Fp} = C. Fp. prer_{C-Fp} O_{max(Fp)} / (C + n_{Fp} (1_s + 1_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| callivolous            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zoopiankton by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Untalia of malagia     | O = EL = E = = = $(T + T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cplake of pelagic      | $\Omega_{FLp-Fp} - FLp. Fp. prel_{FLp-Fp} \cup_{max(Fp)} / (FLp+n_{Fp}(1_s+1_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| fish larvae by pelagic |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | $\mathbf{O} = \mathbf{\Gamma} [\mathbf{I} \mathbf{F}_{\mathbf{T}} + \mathbf{r}_{\mathbf{T}} \mathbf{F}_{\mathbf{T}}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Optake of demersal     | $\Omega_{FLd-Fp} = FLd. Fp. preI_{FLd-Fp}. \bigcup_{max(Fp)} / (FLd+n_{Fp.}(1_s+1_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| fish larvae by pelagic |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | $\Omega_{\text{H-FLd}} = \text{H. FLd. pref_{\text{H-FLd}}} \cup_{\max(\text{FLd})} / (\text{H+n_{\text{FLd}}}(1_{s}+1_{d}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nerbivorous-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zooplankton by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| demersal fish larvae   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uptake of              | $\Omega_{C-Fd} = C. Fd. pref_{C-Fd}. U_{max(Fd)} / (C+h_{Fd}.(1_s+1_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| carnivorous            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| zooplankton by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| demersal fish          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uptake of              | $\Omega_{\text{Bs-Fd}} = \text{Bs. Fd. pref}_{\text{Bs-Fd.}} U_{\text{max}(\text{Fd})} / (\text{Bs+h}_{\text{Fd.}}(\text{T}_{\text{s}}+\text{T}_{\text{d}}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| suspension/deposit     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| feeding benthos by     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| demersal fish          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uptake of              | $\Omega_{\text{Bc-Fd}} = \text{Bc. Fd. pref}_{\text{Bc-Fd.}} U_{\text{max}(\text{Fd})} / (\text{Bc+h}_{\text{Fd.}}(\text{T}_{s}+\text{T}_{d}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| carnivorous/scavenge   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| feeding benthos by     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| demersal fish          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Uptake of pelagic      | $\Omega_{FLp-Fd} = FLp. Fd. pref_{FLp-Fd.} U_{max(Fd)} / (FLp+h_{Fd.}(T_s+T_d))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| fish larvae by         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| demersal fish          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Uptake of demersal    | $\Omega_{\text{FLd-Fd}} = \text{FLd. Fd. pref}_{\text{FLd-Fd.}} U_{\text{max}(\text{Fd})} / (\text{FLd+h}_{\text{Fd.}}(\text{T}_{\text{s}}+\text{T}_{\text{d}}))$ |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fish larvae by        |                                                                                                                                                                   |
| demersal fish         |                                                                                                                                                                   |
| Uptake of pelagic     | $\Omega_{\text{Fp-Fd}} = \text{Fp. Fd. pref}_{\text{Fp-Fd.}} U_{\text{max}(\text{Fd})} / (\text{Fp+h}_{\text{Fd.}}(\text{T}_{\text{s}}+\text{T}_{\text{d}}))$     |
| fish by demersal fish |                                                                                                                                                                   |
| Uptake of pelagic     | $\Omega_{\text{Fp-J}} = \text{Fp. J. pref}_{\text{Fp-J}} U_{\text{max}(J)} / (\text{Fp+h}_J(T_s+T_d))$                                                            |
| fish by               | • • •                                                                                                                                                             |
| birds/mammals         |                                                                                                                                                                   |
| Uptake of demersal    | $\Omega_{\text{Fd-Fd}} = \text{Fd. Fd. pref}_{\text{Fd-Fd.}} U_{\text{max}(\text{Fd})} / (\text{Fd+h}_{\text{Fd.}}(\text{T}_{\text{s}}+\text{T}_{\text{d}}))$     |
| fish by demersal fish |                                                                                                                                                                   |
| Uptake of demersal    | $\Omega_{\text{Fd-J}} = \text{Fd. J. pref}_{\text{Fd-J}} U_{\text{max}(J)} / (\text{Fd+h}_J(T_s+T_d))$                                                            |
| fish by               |                                                                                                                                                                   |
| birds/mammals         |                                                                                                                                                                   |
| Catch of              | $\Omega_{\text{Bs-M}} = \text{Bs. } X_{\text{Bs}}$                                                                                                                |
| suspension/deposit    |                                                                                                                                                                   |
| feeding benthos       |                                                                                                                                                                   |
| Catch of              | $\Omega_{\text{Bc-M}} = \text{Bc. } X_{\text{Bc}}$                                                                                                                |
| carnivorous/scavenge  |                                                                                                                                                                   |
| feeding benthos       |                                                                                                                                                                   |
| Catch of pelagic fish | $\Omega_{\rm Fp-M} = {\rm Fp.} \; {\rm X}_{\rm Fp}$                                                                                                               |
| Catch of demersal     | $\Omega_{\rm Fd-M} = \rm Fd. \ X_{\rm Fd}$                                                                                                                        |
| fish                  |                                                                                                                                                                   |

Balance equations for each state variable.

| Rate term                | Description                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rate of change of        | $dD_s/dt = x_s.P_s - \Omega_{Ds-H} - m_s.D_s - x_{sink_s}.D_s + V(t).((D_d/T_d)-$                                                                              |
| surface detritus (formed | $(D_s/T_s))/T_{Vsd}(t) + I_s(t)*T_s*[D]_{bs}(t) + p_{Id}*I_d(t)*D_d -$                                                                                         |
| from death of surface    | $(I_{s}(t)*T_{s}+p_{Id}*I_{d}(t)*T_{d}+R(t))*D_{s}/T_{s}$                                                                                                      |
| phytoplankton).          |                                                                                                                                                                |
| Rate of change in deep   | $dD_d/dt = ((1-a_H)/2). (\Omega_{Ps-H} + \Omega_{Pd-H} + \Omega_{Ds-H} + \Omega_{Dd-H})$                                                                       |
| detritus (formed from    | + $((1-a_C)/2) \cdot (\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C})$                                                                                         |
| death of deep            | $+((1-a_{FL,p})/2).(\Omega_{H-FL,p})$                                                                                                                          |
| phytoplankton, sinking   | $+((1-a_{FLd})/2).(\Omega_{H-FLd})$                                                                                                                            |
| of detritus from the     | + $((1-a_{F_{p}})/2)$ . $(\Omega_{H-F_{p}} + \Omega_{C-F_{p}} + \Omega_{FL,p-F_{p}} + \Omega_{FL,d-F_{p}})$                                                    |
| surface layer, and the   | + ((1- $a_{Fd}$ )/2). ( $\Omega_{C-Fd}$ + $\Omega_{FL,p-Fd}$ + $\Omega_{FL,d-Fd}$ + $\Omega_{Fp-Fd}$ + $\Omega_{Bs-Fd}$ +                                      |
| faeces of zooplankton    | $\Omega_{\text{Bc-Fd}} + \Omega_{\text{Fd-Fd}} + \Omega_{\text{Df-Fd}} + \Omega_{\text{Dc-Fd}})$                                                               |
| fish and                 | + $((1-a_I)/2)$ . $(\Omega_{Fp-I} + \Omega_{Fd-I} + \Omega_{Df-I})$                                                                                            |
| birds/mammals).          | $+ x_d.U_d + x_d.P_d + x_{sink}.D_s - m_d.D_d - x_{sink}.d.D_d$                                                                                                |
| ,                        | $-\Omega_{\text{Dd-Bs}} - \Omega_{\text{Dd-H}} - V(t).((D_d/T_d)-(D_s/T_s)) / T_{\text{Vsd}}(t) +$                                                             |
|                          | $I_d(t) * T_d * [D]_{bd}(t) - I_d(t) * D_d$                                                                                                                    |
| Rate of change in        | $\frac{dD_v}{dt} = \frac{dU_v}{dt} = \frac{dU_v}{dt}$                                                                                                          |
| sediment detritus        | $+ ((1-a_{Bs})/2) (\Omega_{Dd-Bs} + \Omega_{Pd-Bs} + \Omega_{Dv-Bs})$                                                                                          |
| (formed from the         | $+((1-a_{B_{0}})/2)(\Omega_{B_{0}} a_{0} + \Omega_{D_{0}} a_{0})$                                                                                              |
| settlement of deep       | $+ X_{sink} d D_d$                                                                                                                                             |
| suspended detritus       | $+ X_{corp, sed} D_c$                                                                                                                                          |
| faeces of benthos and    | $- m_v D_v - Q_{Dv} P_c$                                                                                                                                       |
| corpses)                 |                                                                                                                                                                |
| Rate of change in        | $dD_{e}/dt =$                                                                                                                                                  |
| fishery discards         | $+ \operatorname{disc}_{\mathrm{P}} \Omega_{\mathrm{Fr}} M$                                                                                                    |
| nonery abourds.          | $+ \exp(-dfd Fd) O_{EdM}$                                                                                                                                      |
|                          | $+ \operatorname{disc}_{\mathbf{P}_{-}} O_{\mathbf{P}_{-}} M$                                                                                                  |
|                          | $+ \operatorname{disc}_{D_{2}} \Omega_{D_{2}} M$                                                                                                               |
|                          | - X disc som Df                                                                                                                                                |
|                          | - Opera                                                                                                                                                        |
|                          | $- O_{\rm Def}$                                                                                                                                                |
| Rate of change in        | $\frac{dD}{dt} =$                                                                                                                                              |
| seabed corpses           | $dD_0 dt$                                                                                                                                                      |
| seabed corpses.          | $-\mathbf{x}$                                                                                                                                                  |
|                          | $z_{corp-sed}$ , $z_{c}$ , $C^{2} + z_{p}$ , $Bc^{2} + z_{p}$ , $En^{2} + z_{p}$ , $Ed^{2} + z_{r}$ , $I^{2}$                                                  |
|                          | $+2C_{C}C_{F}+2B_{C}DC_{F}+2F_{B}D_{F}+2F_{d}D_{C}+2J_{F}$                                                                                                     |
|                          | $- \Omega_{\rm DC-Fd}$                                                                                                                                         |
| Rate of change in        | $\frac{d\Delta}{dt} = m D$                                                                                                                                     |
| surface ammonia          | $dA_{s}/dt = M_{s}.D_{s}$<br>+ $(T/(T+T))(e_{x}H + e_{z}C + e_{x}FIn + e_{x}FId + e_{z}Fn)$                                                                    |
| surface annihoma.        | + $(T_{s}(T_{s}+T_{d})(c_{H},H+c_{C},C+c_{FLp},H_{Lp}+c_{FLd},H_{Ld}+c_{Fp},H_{p})$<br>+ $(T_{s}/(T_{s}+T_{d})(((1-2\pi))/2)(O_{V,P}+O_{P,P}+O_{P,P}+O_{P,P})$ |
|                          | $(1_{S}(1_{S}+1_{d})(((1-a_{Fp})/2))(22_{H-Fp}+22_{C-Fp}+22_{FLp-Fp}+22_{FLd}))$                                                                               |
|                          | $(T_{1})^{(1)} + (T_{1})^{(1)} ((1_{2})^{(1)})^{(2)} (\Omega_{1})^{(2)}$                                                                                       |
|                          | + $(T_{1})((T_{1}-a_{FL})/(2)(2+FL))$<br>+ $(T_{1})(((T_{2}-a_{FL})/2)(0,, .))$                                                                                |
|                          | + $(T_{s}(1_{s}+1_{d})(((1_{a}+1_{d})/2)(2_{a}+1_{c}+1_{c})))$<br>+ $(T_{s}(1_{s}+1_{d})(((1_{a}+1_{c})/2)(0_{c}+1_{c}+0_{c}+1_{c}+0_{c})))$                   |
|                          | + $(1_{2})^{1_{5}+1_{d}}((1_{-\alpha_{c}})^{2})(2_{H-C} + 2_{FLp-C} + 2_{FLd-C})$<br>+ $((1_{-2})^{2}(O_{p})^{2} + O_{p}^{2})(0_{p})$                          |
|                          | + $((1 - a_H)/2).((3 - a_H + 3 - a_H))$<br>+ $((1 - a_H)/2).((O_H - a_H + O_{H - A_H} + O_{H - A_H}))$                                                         |
|                          | $+ ((1-a_J)/2). (S2F_{p-J} + S2F_{d-J} + S2D_{f-J})$                                                                                                           |
|                          |                                                                                                                                                                |

|                                                                                                                                                                                                                                                                                                     | $-n_s.A_s - \Omega_{As-Us} - \Omega_{As-Ps} + V(t).((A_d/T_d)-(A_s/T_s)) / T_{Vsd}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                     | + $I_s(t) T_s [A]_{bs}(t) + p_{Id} I_d(t) A_d + R(t) T_s [N]_R(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                     | $+ [N]_{A}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                     | $-(I_{s}(t)*T_{s}+p_{Id}*I_{d}(t)*T_{d}+R(t))*A_{s}/T_{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rate of change in deep                                                                                                                                                                                                                                                                              | $dA_d/dt = m_d.D_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ammonia.                                                                                                                                                                                                                                                                                            | $+ (T_d/(T_s+T_d)(e_H.H + e_C.C + e_{Fp}.Fp)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                     | $+ e_{Bs}.Bs + e_{Bc}.Bc + e_{Fd}.Fd$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                     | + $(T_d/(T_s+T_d))(((1-a_{FLp})/2).(\Omega_{H-FLp}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                     | + $(T_d/(T_s+T_d))(((1-a_{FLd})/2).(\Omega_{H-FLd}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                     | + $(T_d/(T_s+T_d)(((1-a_{Fp})/2)).(\Omega_{H-Fp}+\Omega_{C-Fp}+\Omega_{Fd-Fp}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                     | + ( ((1- $a_{Fd}$ )/2). ( $\Omega_{C-Fd}$ + $\Omega_{FLp-Fd}$ + $\Omega_{FLd-Fd}$ + $\Omega_{Fp-Fd}$ + $\Omega_{Bs-Fd}$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                     | $\Omega_{\text{Bd-Fd}} + \Omega_{\text{Bc-Fd}+} + \Omega_{\text{Fd-Fd}+} + \Omega_{\text{Df-Fd}} + \Omega_{\text{Dc-Fd}}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                     | + $(T_d/(T_s+T_d)(((1-a_C)/2).(\Omega_{H-C}+\Omega_{FLp-C}+\Omega_{FLd-C}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                     | + $((1-a_{\rm H})/2).(\Omega_{\rm Dd-H} + \Omega_{\rm Pd-H})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                     | + $((1-a_{Bs})/2)$ . $(\Omega_{Dd-Bs} + \Omega_{Dx-Bs} + \Omega_{Pd-Bs})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                     | + ((1- $a_{Bc}$ )/2). ( $\Omega_{Bs-Bc}$ + $\Omega_{Dc-Bc}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                     | + $V_x.((A_x/(T_x.por_x)) - (A_d/T_d)) / T_{V_x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                     | $-n_{d}A_{d} - V(t).((A_{d}/T_{d})-(A_{s}/T_{s})) / T_{Vsd}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                     | $+ I_d(t) * T_d * [A]_{bd}(t) - I_d(t) * A_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rate of change in                                                                                                                                                                                                                                                                                   | $dA_x/dt = m_x.D_x - n_x.A_x - V_x.((A_x/(T_x.por_x)) - (A_d/T_d)) / T_{Vx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sediment ammonia.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rate of change in                                                                                                                                                                                                                                                                                   | $dN_s/dt = n_s.A_s - \Omega_{Ns-Ps} - \Omega_{Ns-Us} - d_s.N_s + V(t).((N_d/T_d)-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| surface nitrate                                                                                                                                                                                                                                                                                     | $(N_s/T_s)) / T_{Vsd}(t) + R(t) *T_s *[N]_R(t) + [N]_A(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                     | $+ I_{s}(t) T_{s}^{*}[N]_{bs}(t) + p_{Id} I_{d}(t) N_{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                     | $-(I_{s}(t)*T_{s}+p_{Id}*I_{d}(t)*T_{d}+R(t))*N_{s}/T_{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rate of change in deep                                                                                                                                                                                                                                                                              | $dN_d/dt = n_d.A_d - d_d.N_d - V(t).((N_d/T_d)-(N_s/T_s)) / T_{Vsd}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nitrate.                                                                                                                                                                                                                                                                                            | + $V_x.((N_x/(T_x.por_x)) - (N_d/T_d)) / T_{V_x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                     | $+ I_{d}(t) T_{d} [N]_{bd}(t) - I_{d}(t) N_{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rate of change in                                                                                                                                                                                                                                                                                   | $dN_x/dt = n_x.A_x - d_x.N_x - V_x.((N_x/(T_x.por_x)) - (N_d/T_d)) / T_{Vx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sediment nitrate.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rate of change in                                                                                                                                                                                                                                                                                   | $dP_s/dt = \Omega_{As-Ps} + \Omega_{Ns-Ps} - x_s P_s - \Omega_{Ps-H} + V(t) \cdot ((P_d/T_d) - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| surface phytoplankton.                                                                                                                                                                                                                                                                              | $(P_s/T_s)) / T_{Vsd}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                     | $+ I_{s}(t) T_{s}^{*}[P]_{bs}(t) + p_{Id}^{*}I_{d}(t) P_{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                     | $-(I(t)*T + n_1*I(t)*T + P(t))*P/T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathbf{D}$ $(1$ $1$                                                                                                                                                                                                                                                                               | $(1_{s}(t) + 1_{s} + \mathbf{p}_{ld} + 1_{d}(t) + 1_{d} + \mathbf{N}(t) + 1_{s} + 1_{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rate of change in deep                                                                                                                                                                                                                                                                              | $\frac{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / C_{s}/T_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / C_{s}/T_{s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rate of change in deep phytoplankton.                                                                                                                                                                                                                                                               | $\frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / T_{Vsd}(t) + I_{d}(t)^{*}T_{d}^{*}[P]_{bd}(t) - I_{d}(t)^{*}P_{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in                                                                                                                                                                                                                                       | $ \frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d} $ $ \frac{dH}{dt} = a_{H}. (\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - C $                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous                                                                                                                                                                                                                        | $ \frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / T_{Vsd}(t) + I_{d}(t)^{*}T_{d}^{*}[P]_{bd}(t) - I_{d}(t)^{*}P_{d} $ $ \frac{dH}{dt} = a_{H}. (\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp} $                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.                                                                                                                                                                                                        | $\frac{(I_{s}(t) - I_{s} + P_{Hd} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d}) - (P_{s}/T_{s})) / \frac{T_{Vsd}(t) + I_{d}(t) + T_{d} + [P]_{bd}(t) - I_{d}(t) + P_{d}}{dH/dt = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in                                                                                                                                                                                   | $\frac{dP_{s}(t) - r_{s} + p_{Id} - I_{d}(t) - r_{d} + R(t) - r_{s} + r_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / \frac{T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}}{dH/dt = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}}$ $\frac{dC/dt}{dt} = a_{C}.(\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - \frac{e_{C}}{2}$                                                                                                                                                                                                                                                                                    |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous                                                                                                                                                                    | $\frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}$ $\frac{dH}{dt} = a_{H}. (\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC}{dt} = a_{C}. (\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}$                                                                                                                                                                                                                                                                                      |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.                                                                                                                                                    | $\frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}$ $\frac{dH}{dt} = a_{H}. (\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC}{dt} = a_{C}. (\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}$                                                                                                                                                                                                                                                                                      |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in                                                                                                                               | $\frac{dP_{s}(t) - r_{s} + p_{Id} - I_{d}(t) - r_{d} + R(t) - r_{s} + r_{s}}{dP_{s}/dt = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / \frac{T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}}{dH/dt = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}}$ $\frac{dC/dt = a_{C}.(\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}}{dBs/dt = a_{Bs}.(\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Ds-Bs}) - e_{Bs}.Bs - \Omega_{Bs-Bc} - \frac{1}{2}$                                                                                                                                                                              |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in<br>suspension/deposit                                                                                                         | $\frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt} = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / \frac{1}{T_{Vsd}(t) + I_{d}(t) + T_{d}}[P_{bd}(t) - I_{d}(t) + P_{d}}{dH/dt} = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC/dt}{dt} = a_{C}.(\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}$ $\frac{dBs/dt}{dt} = a_{Bs}.(\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs}) - e_{Bs}.Bs - \Omega_{Bs-Bc} - \Omega_{Bs-Fd} - \Omega_{Bs-M}$                                                                                                                                  |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in<br>suspension/deposit<br>feeding benthos.                                                                                     | $\frac{(I_{s}(t) - I_{s} + P_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt} = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / \frac{1}{T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}}{dH/dt} = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC/dt}{dt} = a_{C}.(\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}$ $\frac{dBs/dt}{dt} = a_{Bs}.(\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs}) - e_{Bs}.Bs - \Omega_{Bs-Bc} - \Omega_{Bs-Fd} - \Omega_{Bs-M}$                                                                                                                                     |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in<br>suspension/deposit<br>feeding benthos.<br>Rate of change in                                                                | $\frac{dP_{s}(d) = -x_{d}P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d}) - (P_{s}/T_{s})) / T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}$ $\frac{dH/dt = a_{H.} (\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H.}H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC/dt = a_{C.} (\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C.}C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C.}C^{2}$ $\frac{dBs/dt = a_{Bs.} (\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs}) - e_{Bs.}Bs - \Omega_{Bs-Bc} - \Omega_{Bs-Fd} - \Omega_{Bs-M}$                                                                                                                                                                                                                      |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in<br>suspension/deposit<br>feeding benthos.<br>Rate of change in<br>carnivore/scavenge                                          | $\frac{dP_s(t) - T_s + PId^{-1}d(t) - T_d + R(t)) - T_{s'} T_s}{dP_s(t) = -x_d.P_d - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_d/T_d) - (P_s/T_s)) / T_{Vsd}(t) + I_d(t) * T_d * [P]_{bd}(t) - I_d(t) * P_d}$ $\frac{dH/dt = a_{H.} (\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H.}H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC/dt}{dt} = a_{C.} (\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C.}C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C.}C^2$ $\frac{dBs/dt}{dBs/dt} = a_{Bs.} (\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs}) - e_{Bs.}Bs - \Omega_{Bs-Bc} - \Omega_{Bs-Fd} - \Omega_{Bs-M}$ $\frac{dBc/dt}{dBc/dt} = a_{Bc.} (\Omega_{Bs-Bc} + \Omega_{Dc-Bc}) - e_{Bc.}Bc - \Omega_{Bc-Fd} - \Omega_{Bc-M} - z_{Bc.}Bc^2$                                |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in<br>suspension/deposit<br>feeding benthos.<br>Rate of change in<br>carnivore/scavenge<br>feeding benthos.                      | $\frac{(I_{s}(t) - I_{s} + p_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt} = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / \frac{1}{T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}}{dH/dt} = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC/dt}{dt} = a_{C}.(\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}$ $\frac{dBs/dt}{dBs/dt} = a_{Bs}.(\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs}) - e_{Bs}.Bs - \Omega_{Bs-Bc} - \Omega_{Bs-Fd} - \Omega_{Bs-M}$ $\frac{dBc/dt}{dBc/dt} = a_{Bc}.(\Omega_{Bs-Bc} + \Omega_{Dc-Bc}) - e_{Bc}.Bc - \Omega_{Bc-Fd} - \Omega_{Bc-M} - z_{Bc}.Bc^{2}$ |
| Rate of change in deep<br>phytoplankton.<br>Rate of change in<br>herbivorous<br>zooplankton.<br>Rate of change in<br>carnivorous<br>zooplankton.<br>Rate of change in<br>suspension/deposit<br>feeding benthos.<br>Rate of change in<br>carnivore/scavenge<br>feeding benthos.<br>Rate of change in | $\frac{(I_{s}(t) - I_{s} + p_{Id} - I_{d}(t) - I_{d} + R(t)) - I_{s} + I_{s}}{dP_{s}/dt} = -x_{d}.P_{d} - \Omega_{Pd-H} - \Omega_{Pd-Bs} - V(t).((P_{d}/T_{d})-(P_{s}/T_{s})) / \frac{T_{Vsd}(t) + I_{d}(t)*T_{d}*[P]_{bd}(t) - I_{d}(t)*P_{d}}{dH/dt} = a_{H}.(\Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H}) - e_{H}.H - \Omega_{H-C} - \Omega_{H-FLp} - \Omega_{H-FLd} - \Omega_{H-Fp}$ $\frac{dC/dt}{dt} = a_{C}.(\Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C}) - e_{C}.C - \Omega_{C-Fd} - \Omega_{C-Fp} - z_{C}.C^{2}$ $\frac{dBs/dt}{dBs/dt} = a_{Bs}.(\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs}) - e_{Bs}.Bs - \Omega_{Bs-Bc} - \Omega_{Bs-Fd} - \Omega_{Bs-M}$ $\frac{dBc/dt}{dEc} = a_{Bc}.(\Omega_{Bs-Bc} + \Omega_{Dc-Bc}) - e_{Bc}.Bc - \Omega_{Bc-Fd} - \Omega_{Bc-M} - z_{Bc}.Bc^{2}$       |

| Rate of change in     | $dFLd/dt = a_{FLd.}(\Omega_{H-FLd}) - e_{FLd.}FLd - \Omega_{FLd-C} - \Omega_{FLd-Fp} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| demersal fish larvae. | $\Omega_{FLd-Fd}$ + Dspn(t) * F <sub>d</sub> - Drec(t) * FL <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rate of change in     | $dFp/dt = a_{Fp} (\Omega_{C-Fp} + \Omega_{H-Fp} + \Omega_{FLp-Fp} + \Omega_{FLd-Fp}) - e_{Fp} Fp$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| pelagic fish.         | $\Omega_{\text{Fp-Fd}} - \Omega_{\text{Fp-M}} - \Omega_{\text{Fp-J}} - z_{\text{Fp}} \cdot Fp^2 - Pspn(t) * F_p + Prec(t) *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | FLp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rate of change in     | $dFd/dt = a_{Fd}$ .( $\Omega_{Bs-Fd} + \Omega_{Bd-Fd} + \Omega_{Bc-Fd} + \Omega_{C-Fd} + \Omega_{FLp-Fd} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| demersal fish.        | $\Omega_{FLd-Fd} + \Omega_{Fp-Fd} + \Omega_{Fd-Fd} + \Omega_{Df-Fd} + \Omega_{Dc-Fd}) - e_{Fd}Fd - \Omega_{Fd-M} - \Theta_{Fd-M} - \Theta_$ |
|                       | $\Omega_{\text{Fd-J}} - z_{\text{Fd}} \cdot Fd^2$ - Dspn(t).F <sub>d</sub> + Drec(t).FL <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rate of change in     | $dJ/dt = aJ. (\Omega_{Fp-J} + \Omega_{Fd-J} + \Omega_{Df-J}) - e_J.J - z_J.J^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| birds/mammals.        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**Table S7**Derived properties of the model.

| Property                                                     | Description                                                                                                                                      |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Total annual<br>primary<br>production                        | $T = \sum_{day0}^{day360} \left( \Omega_{As-Ps} + \Omega_{Ns-Ps} \right)$                                                                        |
| Annual MMP                                                   | $\tau = \max_{day0}^{day360} (N_s + N_d) - \min_{day0}^{day360} (N_s + N_d)$                                                                     |
| Annual PNP                                                   | $\tau p_N = \sum_{day0}^{day360} \left( \Omega_{Ns-Ps} + d.N_s - n.A_s \right)$                                                                  |
| Annual MMIP                                                  | $\pi i_{N} = \tau + \sum_{day  90}^{day  270} \left( R(t) + I_{s}(t) * T_{s} * ([N]_{bs} + [A]_{bs}) + I_{d}(t) * (N_{d} + A_{d}) \right)$       |
| Annual vertical nitrate flux                                 | $Vf_{N} = \sum_{day 0}^{day 360} (V(t).((N_{d}/T_{d}) - (N_{s}/T_{s}))/T_{Vsd(t}) + I_{d}(t) * N_{d})$                                           |
| Annual<br>horizontal nitrate<br>flux in the<br>surface layer | $Hf_{N} = \sum_{day0}^{day360} ((I_{s}(t) * T_{s} * [N]_{bs}) - (I_{s}(t) * T_{s} + I_{d}(t) * T_{d}) * N_{s}/T_{s})$                            |
| Total annual nitrate uptake                                  | $T_N = \sum_{day0}^{day360} \left( \Omega_{Ns-Ps} \right)$                                                                                       |
| Annual f-ratio                                               | $f = \tau p / T$                                                                                                                                 |
| Annual<br>mesozooplankton<br>gross production                | $\gamma = \sum_{day0}^{day360} \left( a_{\mathrm{H}} \cdot \left( \Omega_{Ds-H} + \Omega_{Ps-H} + \Omega_{Dd-H} + \Omega_{Pd-H} \right) \right)$ |

| Annual                                             | $\chi = \sum_{L}^{day 360} \left( a_{C} \cdot \left( \Omega_{H-C} + \Omega_{FLp-C} + \Omega_{FLd-C} \right) \right)$                                                                                                        |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| zoonlankton                                        | day 0                                                                                                                                                                                                                       |
| gross production                                   |                                                                                                                                                                                                                             |
| Annual benthos<br>gross production                 | $\beta = \sum_{day0}^{day360} \left( \mathbf{a}_{B} \cdot \left( \Omega_{Pd-Bs} + \Omega_{Dd-Bs} + \Omega_{Dx-Bs} + \Omega_{Bs-Bc} \right) \right)$                                                                         |
| Annual demersal<br>fish gross<br>production        | $\phi d = \sum_{day0}^{day360} \left( a_{Fd} \left( \Omega_{C-Fd} + \Omega_{Bs-Fd} + \Omega_{Bc-Fd} + \Omega_{Fp-Fd} + \Omega_{FLp-Fd} + \Omega_{FLd-Fd} + \Omega_{Fd-Fd} + \Omega_{Df-Fd} + \Omega_{DcFd} \right) \right)$ |
| Annual pelagic<br>fish gross<br>production         | $\phi p = \sum_{day0}^{day360} \left( a_{Fp} \left( \Omega_{H-Fp} + \Omega_{C-Fp} + \Omega_{FLp-Fp} + \Omega_{FLd-Fp} \right) \right)$                                                                                      |
| Annual demersal<br>fish larvae gross<br>production | $\phi Ld = \sum_{day 0}^{day 360} (a_{FLd} (\Omega_{H-FLd}))$                                                                                                                                                               |
| Annual pelagic<br>fish larvae gross<br>production  | $\phi Lp = \sum_{day0}^{day360} \left( a_{FLp} \left( \Omega_{H-FLp} \right) \right)$                                                                                                                                       |
| Annual<br>bird/mammal<br>gross production          | $\Pi = \sum_{day 0}^{day 360} \left( a_J \left( \Omega_{Fp-J} + \Omega_{Fd-J} + \Omega_{Df-J} \right) \right)$                                                                                                              |
| Pelagic fish<br>annual egg<br>production           | $\sum_{day 0}^{day 360} (Pspn(t) . Fp)$                                                                                                                                                                                     |
| Pelagic fish<br>annual<br>recruitment              | $\sum_{day0}^{day360} (\operatorname{Prec}(t)  FLp)$                                                                                                                                                                        |

| Demersal fish<br>annual egg<br>production              | $\sum_{day0}^{day360} (\text{Dspn}(t)  .  \text{Fd})$                                                                                                                                                                         |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demersal fish<br>annual<br>recruitment                 | $\sum_{day 0}^{day 360} (\text{Drec}(t) \cdot \text{FLd})$                                                                                                                                                                    |
| Total export<br>from secondary<br>producers            | $\sum_{day0}^{day360} \left( \Omega_{\text{H-C}} + \Omega_{\text{H-FLp}} + \Omega_{\text{H-Fld}} + \Omega_{\text{H-Fp}} + \Omega_{\text{Bs-Bc}} + \Omega_{\text{Bs-Fd}} \right)$                                              |
| Total animal production                                | $\Psi + \gamma + \chi + \beta + \phi L p + \phi L d + \phi p + \phi d + \Pi$                                                                                                                                                  |
| Fishery landings                                       | $\sum_{day 0}^{day 360} \left( \left(1 - disc_{Fp}\right) \Omega_{Fp-M} + \left(1 - \exp(-dfd.Fd)\right) \Omega_{Fd-M} + \left(1 - disc_{Bs}\right) \Omega_{Bs-M} + \left(1 - disc_{Bc}\right) \Omega_{Bc-M} \right) \right)$ |
| Total annual<br>water column<br>mineralization<br>flux | $\sum_{day0}^{day360} \left( m_{s}.D_{s} + m_{d}.D_{d} \right)$                                                                                                                                                               |
| Total annual<br>sediment<br>mineralization<br>flux     | $\sum_{day0}^{day360} m_x . D_x$                                                                                                                                                                                              |
| Total annual<br>denitrification<br>flux                | $\sum_{day0}^{day360} \left( \mathbf{d}_{s} \cdot \mathbf{N}_{s} + \mathbf{d}_{d} \cdot \mathbf{N}_{d} \right)$                                                                                                               |
| Total annual nitrification flux                        | $\sum_{day0}^{day360} (n_{s}.A_{s} + n_{d}.A_{d} + n_{x}.A_{x})$                                                                                                                                                              |

| Total annual<br>sediment-water<br>ammonia flux                              | $\sum_{day0}^{day360} \left( V_{x.}T_{Vx}.((A_{x}/(T_{x}.por_{x})) - (A_{d}/T_{d})) \right) + \sum_{day0}^{day360} (((1 - a_{Bs})/2).(\Omega_{Dd-Bs} + \Omega_{Dx-Bs} + \Omega_{Pd-Bs})) + $ |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | $\sum_{day0}^{day360} (((1 - a_{Bc})/2).(\Omega_{Bs-Bc} + \Omega_{Dc-Bc}))$                                                                                                                  |
| Total annual<br>sediment-water<br>nitrate flux                              | $\sum_{day0}^{day360} (V_{x}T_{vx}.((N_{x}/(T_{x}.por_{x})) - (N_{d}/T_{d}))))$                                                                                                              |
| Total annual<br>particulate flux<br>from water<br>column to the<br>sediment | $\sum_{day0}^{day360} \left(\Omega_{Pd-Bs} + \Omega_{Dd-Bs} + x_{disc-corp}.D_f + x_{\sin k\_d}.D_d\right)$                                                                                  |
| Total annual flux<br>of fishery<br>discards to the<br>sediment              | $\sum_{day0}^{day360} \left( \mathbf{x}_{disc\text{-corp}} \cdot \mathbf{D}_{f} \right)$                                                                                                     |
| Total mass of nitrogen                                                      | $\begin{array}{l} D_s+D_d+D_x+D_f+D_c+A_s+A_d+N_s+N_d+P_s+P_d+H+C+Bs+Bc+FLp+FLd+Fp\\ +Fd+J \end{array}$                                                                                      |

Metabolic parameters for all living components of the model. These parameters were fixed and not subject to fitting by the simulated annealing process.

|                        |              | Durantian of      | Background<br>proportion of    |                     |
|------------------------|--------------|-------------------|--------------------------------|---------------------|
|                        |              | Proportion of     | biomass excreted               | O for               |
|                        |              | uplake            | d <sup>-1</sup> ) at reference | Q <sub>10</sub> IOI |
|                        |              |                   | d) at reference                | Dackground          |
|                        | $Q_{10}$ for | biomass ( $a_x$ , | temperature of                 | excretion           |
| Predator               | uptake rates | d <sup>-1</sup> ) | 10°C                           | rates               |
| Phytoplankton          | 2.0          | 0.34              | n/a                            | n/a                 |
| Herbivorous            | 2.2          | 0.34              | 0.01                           | 2.4                 |
| zooplankton            |              |                   |                                |                     |
| Carnivorous            | 2.2          | 0.34              | 0.005                          | 2.4                 |
| zooplankton            |              |                   |                                |                     |
| Suspension/deposit     | 2.2          | 0.34              | 0.01                           | 2.4                 |
| feeding benthos        |              |                   |                                |                     |
| Carnivorous/scavenging | 2.2          | 0.34              | 0.0075                         | 2.4                 |
| benthos                |              |                   |                                |                     |
| Pelagic fish larvae    | 2.2          | 0.34              | 0.00005                        | 2.4                 |
| Pelagic fish adults    | 2.2          | 0.275             | 0.001                          | 2.4                 |
| Demersal fish larvae   | 2.2          | 0.34              | 0.00005                        | 2.4                 |
| Demersal fish adults   | 2.2          | 0.25              | 0.001                          | 2.4                 |
| Birds/mammals          | 2.2          | 0.15              | 0.0005                         | 2.4                 |

Miscellaneous biological parameters of the model which were fixed and not subject to fitting by the simulated annealing process.

| Parameter                                        | Value | Units             |
|--------------------------------------------------|-------|-------------------|
| Irradiance at maximum nutrient uptake by         | 5     | $E.m^{-2}.d^{-1}$ |
| phytoplankton                                    |       |                   |
| Pelagic fish: date of onset of spawning          | 100   | Day of the year   |
| Pelagic fish: duration of spawning               | 250   | d                 |
| Pelagic fish: date of onset of recruitment       | 1     | Day of the year   |
| Pelagic fish: duration of recruitment            | 150   | d                 |
| Pelagic fish: annual potential fecundity         | 0.25  | g.g <sup>-1</sup> |
| Demersal fish: date of onset of spawning         | 60    | Day of the year   |
| Demersal fish: duration of spawning              | 90    | d                 |
| Demersal fish: date of onset of recruitment      | 200   | Day of the year   |
| Demersal fish: duration of recruitment           | 150   | d                 |
| Demersal fish: annual potential fecundity        | 0.4   | g.g <sup>-1</sup> |
| $Q_{10}$ for mineralization, nitrification and   | 2.4   | °C-1              |
| denitrification (same in all water column layers |       |                   |
| and sediment)                                    |       |                   |

# Table S10

Maximum likelihood uptake rate parameters  $U_{max(consumer)}$  (d<sup>-1</sup>) at the reference temperature of 10°C, and half-saturation constants  $h_{(consumer)}$ . Units of the half-saturation constants are mMN.m<sup>-3</sup>, except for the benthos guilds (suspension/deposit, and carnivorous/scavenging benthos) where the units are mMN.m<sup>-2</sup>.

| Consumer                      | $U_{max(consumer)}$ | $h_{(consumer)}$ | Density     |
|-------------------------------|---------------------|------------------|-------------|
|                               |                     |                  | dependent   |
|                               |                     |                  | mortality   |
|                               |                     |                  | coefficient |
| Phytoplankton                 | 2.791               | 16.464           | n/a         |
| Herbivorous zooplankton       | 1.147               | 4.675            | n/a         |
| Carnivorous zooplankton       | 0.322               | 1.769            | 8.175E-04   |
| Suspension/deposit feeding    |                     |                  | n/a         |
| benthos                       | 2.838               | 148.637          |             |
| Carnivorous/scavening benthos | 0.060               | 6.702            | 6.193E-04   |
| Pelagic fish larvae           | 0.534               | 5.801            | 1.990E-06   |
| Pelagic fish adults           | 0.058               | 1.176            | 5.260E-05   |
| Demersal fish larvae          | 0.209               | 2.818            | 1.140E-06   |
| Demersal fish adults          | 0.015               | 0.365            | 4.770E-05   |
| Birds/mammals                 | 0.137               | 1.433            | 7.384E-03   |

Maximum likelihood preference parameters  $pref_{resource-consumer}$  for all resource-consumer links in the model. Preferences for each consumer guild (columns) sum to 1.0

|                        |    |       |       |       |       | Cor   | nsumers |       |       |       |         |
|------------------------|----|-------|-------|-------|-------|-------|---------|-------|-------|-------|---------|
|                        |    |       |       |       |       |       |         |       |       |       | Birds/  |
| Resource               | ID | 7     | 8     | 9     | 10    | 11    | 12      | 13    | 14    | 15    | mammals |
| Ammonia                | 1  | 0.614 |       |       |       |       |         |       |       |       |         |
| Nitrate                | 2  | 0.386 |       |       |       |       |         |       |       |       |         |
| Suspended detritus     | 3  |       | 0.053 |       | 0.675 |       |         |       |       |       |         |
| Sediment detritus      | 4  |       |       |       | 0.014 |       |         |       |       |       |         |
| Corpses                | 5  |       |       |       |       | 0.512 |         |       |       | 0.025 | 0.205   |
| Fishery discards       | 6  |       |       |       |       |       |         |       |       | 0.091 | 0.641   |
| Phytoplankton          | 7  |       | 0.947 |       | 0.311 |       |         |       |       |       |         |
| Herbivorous            |    |       |       |       |       |       |         |       |       |       |         |
| zooplankton            | 8  |       |       | 0.840 |       |       | 1.000   | 0.712 | 1.000 |       |         |
| Carnivorous            |    |       |       |       |       |       |         |       |       |       |         |
| zooplankton            | 9  |       |       |       |       |       |         | 0.222 |       | 0.017 |         |
| Suspension/deposit     |    |       |       |       |       |       |         |       |       |       |         |
| feeding benthos        | 10 |       |       |       |       | 0.488 |         |       |       | 0.421 |         |
| Carnivorous/scavenging |    |       |       |       |       |       |         |       |       |       |         |
| benthos                | 11 |       |       |       |       |       |         |       |       | 0.032 |         |
| Pelagic fish larvae    | 12 |       |       | 0.120 |       |       |         | 0.050 |       | 0.119 |         |
| Pelagic fish adults    | 13 |       |       |       |       |       |         |       |       | 0.132 | 0.116   |
| Demersal fish larvae   | 14 |       |       | 0.040 |       |       |         | 0.016 |       | 0.048 |         |
| Demersal fish adults   | 15 |       |       |       |       |       |         |       |       | 0.115 | 0.038   |

**Table S12**Maximum liklelihood values of biogeochemical and fishery discarding parameters.

| Parameter                                                                                   | Surface   | Deep layer                                                                                                                                           | Sediment |
|---------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Lysis rate of phytoplankton d <sup>-1</sup>                                                 | 0.0321    | 0.0501                                                                                                                                               | n/a      |
| Sinking rate of detritus d <sup>-1</sup>                                                    | 0.128     | $0.266 \text{ at } \log_{10} \text{ vertical}$<br>diffusion (V(t)) = -6<br>$0.049 \text{ at } \log_{10} \text{ vertical}$<br>diffusion (V(t)) = -3.4 | n/a<br>- |
| Coefficient for biomass<br>dependency of demersal fish<br>discard rate                      | 0.089     | n/a                                                                                                                                                  | n/a      |
| Conversion rate of fishery discards to corpses d <sup>-1</sup>                              | n/a       | 0.414                                                                                                                                                | n/a      |
| Conversion rate of seabed corpses to sediment detritus d <sup>-1</sup>                      | n/a       | n/a                                                                                                                                                  | 0.0946   |
| Mineralization rate of detritus at the reference temperature of 10°C, d <sup>-1</sup>       | 0.0082    | 0.0082                                                                                                                                               | 0.0077   |
| Nitrification rate of ammonia at the reference temperature of 10°C, d <sup>-1</sup>         | 0.0041    | 0.0427                                                                                                                                               | 0.0358   |
| Denitrification rate of nitrate at<br>the reference temperature of<br>10°C, d <sup>-1</sup> | 0.0000405 | 0.0000621                                                                                                                                            | 0.2638   |

Stationary time series of dissolved inorganic nutrient state variables in the water column layers and sediment pore water of the model, over the final year of an 80 year run with the maximum likelihood parameter vector and 1970-1999 climatological average physical and chemical driving data. Units for all dissolved nutrient variables: mMN.m<sup>-3</sup>.



Stationary time series of dead organic state variables in the model, over the final year of an 80 year run with the maximum likelihood parameter vector and 1970-1999 climatological average physical and chemical driving data. Units for water column detritus variables: mMN.m<sup>-3</sup>. Units for fishery discards and corpses: mMN.m<sup>-2</sup>.



Stationary time series of phytoplankton and zooplankton state variables in the water column layers of the model, over the final year of an 80 year run with the maximum likelihood parameter vector and 1970-1999 climatological average physical and chemical driving data. Units for all plankton variables: mMN.m<sup>-3</sup>.



Stationary time series of larval and adult fish state variables in the model, over the final year of an 80 year run with the maximum likelihood parameter vector and 1970-1999 climatological average physical and chemical driving data. Units for all fish variables: mMN.m<sup>-3</sup>.



Stationary time series of filter & deposit feeding benthos, carnivorous & scavenge feeding benthos, and bird/mammal state variables in the model, over the final year of an 80 year run with the maximum likelihood parameter vector and 1970-1999 climatological average physical and chemical driving data. Units for benthos and birdm/ammal variables: mMN.m<sup>-2</sup>.

