Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Symbol synchronisation implementation for low-power RF communication in wireless sensor networks

MacEwen, N.C. and Crockett, L.H. and Pfann, E. and Stewart, R.W. (2005) Symbol synchronisation implementation for low-power RF communication in wireless sensor networks. In: Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, 2005. IEEE, 447 - 451. ISBN 1-4244-0131-3

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Speckled Computing is a novel vision of a wireless sensor network consisting of small nodes which can sense, compute and network wirelessly. The nodes will individually have limited power and processing resources, but together will form a powerful processing system. Electrical power resources at such a volume are severely restricted, and as such design decisions are made with low-power as the first priority. This work examines the use of Manchester encoding in the digital transceiver to reduce the complexity of symbol synchronisation. A Manchester decoder has been implemented which has the useful property of being tolerant to oscillator inaccuracies, allowing a cheap and low-power clock source to be employed. A realistic implementation of the decoder using rectangular pulseshaping and an oversampling ratio of 8 allows an on-chip oscillator tolerance of more than 11%.