Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Improving cubic EOSs near the critical point by a phase-space cell approximation

Fornasiero, F. and Lue, L. and Bertucco, A. (1999) Improving cubic EOSs near the critical point by a phase-space cell approximation. AIChE Journal, 45 (4). pp. 906-915. ISSN 0001-1541

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Cubic equations of state (EOSs) are widely used to model the thermodynamic properties of pure fluids and mixtures. However, because they fail to account for the long-range fluctuations existing in a fluid near the critical point, they do not accurately predict the fluid properties in the critical region. Recently, an approximate renormalization group method was developed that can account for these fluctuations.A similar method is applied to provide corrections to a generalized cubic EOS for pure fluids, which is able to represent all classic cubic EOSs. The proposed approach requires two additional parameters:<(c)over bar(RG)> and Delta. The value of <(c)over bar(RG)> is correlated to experimental critical compressibility data, while Delta is set equal to 1. The method is applied to predict the saturated liquid density of fluids of different polarity, and the corrections to the original EOS are found to significantly improve the predictions of this property both far from and close to the critical point. Finally,a correlation is presented for the direct evaluation of the parameter<(c)over bar(RG)> from the value of the critical compressibility factor.