Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Signalling mechanisms underlying the myogenic response in human subcutaneous resistance arteries

Coats, P. and Johnston, Fiona and MacDonald, John and McMurray, John J. and Hillier, Chris (2001) Signalling mechanisms underlying the myogenic response in human subcutaneous resistance arteries. Cardiovascular Research, 49 (4). pp. 828-837. ISSN 0008-6363

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this study we have examined for the first time the signal transduction mechanisms involved in the generation of pressure-dependent myogenic tone in human small resistance arteries from the subcutaneous vascular bed. Methods: Myogenic responses and the subcellular mechanisms involved in the generation of this response were studied on a pressure myograph. Human subcutaneous resistance arteries constricted 14.1±1.1% in response to an increases in intraluminal pressure from 40 to 80 mmHg and a further 3.5±1.7% in response to the 80–120-mmHg pressure step. Ca2+ depletion or nifedipine abolished this response, whereas BAY K 8644 increased this response to 20.6±2.1% (P<0.05, response vs. control). The phospholipase C inhibitor U-73122 reduced the myogenic response to 2.5±1.0% at 80 mmHg (P<0.01, response vs. control) and abolished it at 120 mmHg. Diacylglycerol lipase inhibition with RHC-80267 abolished all myogenic responses to pressure. The protein kinase C (PKC) activator phorbol 12,13-dibutyerate increased the maximal myogenic response to 20.9±1.8% (P<0.05, response vs. control), whereas the PKC inhibitor calphostin C abolished myogenic responses. These data show that the generation of pressure-dependent myogenic tone in human subcutaneous arteries is dependent on Ca2+ influx via voltage operated Ca2+ channels (VOCCs) and a concomitant requirement for the activation of phospholipase C (PLC), diacylglycerol, and PKC.