Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

The effect of instrument resolution on diffusion coefficients measured using NMR spectroscopy

Galbraith, G.H. and Guo, J. and McLean, R.C. and Munsi, A.S.M.Y. and Sanders, C.H. (2001) The effect of instrument resolution on diffusion coefficients measured using NMR spectroscopy. Materials and Structures, 34 (7). pp. 389-395. ISSN 1359-5997

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This study presents a numerical simulation of the performance of an NMR spectrometer in which the influence of equipment with both low and high spatial resolutions is investigated. The results indicate that a low resolution NMR with a wide sensitivity curve may be unable to provide an accurate estimation of the moisture profile along the whole length of a test sample where the moisture gradient changes abruptly. It cannot provide accurate moisture information over a distance measured from each end of the test sample equivalent to the effective width of the sensitivity curve. However, a low-resolution spectrometer does not show any significant errors when calculating liquid diffusion coefficients, although the range of moisture contents over which they can be measured is limited. This study suggests that to avoid errors and practical difficulties, NMR spectrometers for moisture measurement should be selected carefully by matching the effective width of the sensitivity curve to the moisture properties of the material to be measured.