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Abstract: Some processes are naturally suitable to be controlled in a decentralized framework:
centralized control solutions are often infeasible in dealing with large scale plants and they
are technologically prohibitive when the processes are too fast for the available computational
resources. In these cases, the resulting control problem is usually split in many smaller
subproblems and the global requirements are guaranteed by means of a proper coordination.
The unconstrained decentralized case is here considered and a coordination strategy is
proposed for improving the global control performances. This paper present a tool for setting
up and tuning a nominally stable decentralized Model Predictive Controller. Numerical
examples are proposed for testing and validating the developed technique.
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1. INTRODUCTION

The current diffusion of networks allows the control
technologies and methodologies to fully express their
potentials in many application fields. By means of the
fast communication technologies, nowadays different
independent controllers distributed in a wide area can
exchange information in order to improve both the
local and the global control performances. Robotic ap-
plications with multiple autonomous agents pursuing
a common goal, control applications in manufacturing
and process industry where multiple units coopera-
tively make a product, supply chains in which multiple
actors that influence each other are involved, and large
scale power systems represent some typical situations.

A decentralized control solution based on independent
agents is here considered for the regulation of dif-
ferent interacting processes. Global objectives, such
as closed-loop stability and performance requirements
for the global process require coordination among the
control agents.

Different solutions have been developed in literature.
The required coordination can be introduced by a hier-
archical decentralized control scheme, where a super-
visor computes the global optimum and coordinates
all the control agents (Šiljak, 1996). A decentralized
filtering and control architecture managed by a global
coordinator has been proposed by Katebi and Johnson
(1997) for guaranteing steady state optimality of the
control actions. A different solution based on the team
theory and asynchronous teams has been proposed in
Camponogara (2000). A decomposition of the global
process into subsystems, based on the structural prop-
erties and physical constraints, has been developed
in Jia and Krogh (2001), Cheng and Krogh (2001),
Camponogaraet al. (2002), Jia (2003), where each
agent controls a subsystem making use of local model,
objectives and constraints. Gudiet al. (2004) investi-
gated the identification procedure oriented to decen-
tralized MPC. The effectiveness of the communication
based MPC and the importance of the interaction anal-
ysis for improving the control performances has been
validated in Venkatet al. (2005).



A partitioning of both actuators and sensors has been
proposed by Motee and Sayyar-Rodsari (2003) as a
solution for the problem of computational complexity
for the use of MPC technology in large scale dynamic
systems. Adopting a proper decentralized solution, the
global computational effort can be reduced without
significant degradations of the control performances
and the fault tolerant issues can be improved (El-Farra
et al., 2004).

The functionalities of a Networked Decentralized
Model Predictive Control solution (ND-MPC) have
been recently tested on real plants with relatively
strong interactions. The results obtained with the de-
centralized MPC of a gasifier seem to be satisfactory
if compared with those obtained by the classical cen-
tralized MPC (Longhiet al., 2005). Stability analysis
tools for testing the stability of the ND-MPC archi-
tecture have been also proposed by Vaccariniet al.
(2006).

This paper summarizes the results on the stability
analysis developed by the authors and present a set
of simulation tests to validate the proposed tool and
to illustrate its use for the synthesis of decentralized
controllers with communication networks. After a de-
scription of the adopted ND-MPC strategy provided
in Section 2, the stability analysis tool is presented
in Section 3. Based on the former considerations, the
control algorithm is outlined in Section 4 and the tool
is applied to the synthesis of decentralized controllers
for a set of testing plants in Section 5.

In order to simplify the mathematical expressions,
some notations are here introduced. Given the num-
bersk∈Z, h∈Z, m∈N, j ∈N, i ∈N, n∈N such that
k≥ h, j ≥ 1, m≥ h−k+1, i = 1, . . . ,n:

• ‖v‖A , ATvA is the norm of vectorv induced by
matrixA;

• λ j{A} is the j-th eigenvalue of a square matrix
A.

• x̂(k|h) , E
[
x(k)

∣∣Yh
]

is the (h− k)-step ahead
prediction ofx, given the measurementsYh up
to timek;

• u(k|h) is the value ofu(k), computed at timeh;
• Xi(k,m|h) is a stacked vector made by the vectors

xi(k|h), . . . ,xi(k+m−1|h);
• X(k,m|h) is a stacked vector made by the vectors

X1(k,m|h), . . . ,Xn(k,m|h);

2. NETWORKED DECENTRALIZED MPC

For achieving global performance objectives, a coor-
dination scheme based on communication among con-
trol agents is developed. The control actions are com-
puted by a set of subcontrollers which are independent
agents able to dynamically exchange a restricted set
of information. In the proposed control architecture,
each agentAi implements an MPC algorithm for the
subsystemSi using both local information acquired

on Si and the estimate of the interactions amongSi

and the other subsystemsS j , j = 1, . . . ,n, j 6= i. The
resulting optimal sequence and the future prediction
of the state over the prediction horizon, have to be
exchanged among subsystems through a Local Area
Network (LAN).

As well known, Model Predictive Control acts accord-
ing to the receding horizon principle: at each sampling
time, using a predictive model of the system dynamics,
the response of the process to changes in manipulated
variables over a fixed horizon is predicted. Based on a
proper cost function, a finite-horizon optimal control
problem is solved to obtain current and future moves
of the manipulated variables. Only the first computed
move is applied to the real system. The same pro-
cedure is repeated at the next control step based on
the new measurement. Although this computation is
an open-loop control problem, the receding horizon
principle allows MPC to generate a feedback-control
law.

Let consider a linear, discrete-time representation of a
plantP:

x(k+1) =Ax(k)+Bu(k) (1a)

y(k) =Cx(k). (1b)

and denote withx ∈ Rnx, u ∈ Rnu, y(k) ∈ Rny and
yd ∈ Rny, its state, control input, output and desired
output, respectively. Suppose thatP is composed by
n subsystemsSi whose state-space representation is:

xi(k+1) =Aii xi(k)+Bii ui(k)+wi(k) (2a)

yi(k) =Cii xi(k)+vi(k). (2b)

where vectorsxii , ui , yi andyd
i are the local state, con-

trol input, output and desired output respectively, and
vectorswi andvi , named state and output interaction
vectors, are given by:

vi(k) ,
n

∑
j=1( j 6=i)

Ai j x j(k)+
n

∑
j=1( j 6=i)

Bi j u j(k), (3a)

wi(k) ,
n

∑
j=1( j 6=i)

Ci j x j(k). (3b)

Definition 1.(ND-MPC). Given the plantP com-
posed byn subsystemsSi , i = 1, . . . ,n the uncon-
strained Networked Decentralized Model Predictive
Control problem with prediction horizonp and con-
trol horizonm consists of finding, at timek, a set of
independent agentsAi , i = 1, . . . ,n, such that eachAi

minimizes the local cost function

Ji ,
p

∑
l=1

∥∥∥ŷi(k+ l |k)−yd
i (k+ l |k)

∥∥∥
Qi

+

+
m

∑
l=1

∥∥∥∆ui(k+ l −1|k)
∥∥∥

Ri
, (4a)

subject, forl = 1, . . . , p, to the model constraint:



ŷi(k+ l |k) = v̂i(k+ l |k−1)+Cii A
l
ii x̂i(k|k)+

+
l

∑
s=1

Cii A
s−1
ii Bii ui(k+ l −s|k)+

+
l

∑
s=1

Cii A
s−1
ii ŵi(k+ l −s|k−1). (4b)

Definition 2.(Interaction). When a changes in input,
state or output variables of a subsystemSi produces
variations of input, state or output variables of a sub-
systemS j , it is said thatSi interacts withS j .

Definition 3.(Connection). When the agentAi sends
information about the future behavior of subsystemSi

to the agentA j , it is said thatAi is connected withA j .

Definition 4.(Neighboring Agent). If the agentAi is
connected withA j , Ai is called input neighboring
agent ofA j andA j is called output neighboring agent
of Ai . Ai andA j are said neighboring agents.

Definition 5.(Neighborhood of an Agent). The input
(output) neighborhood of an agentAi is the set of its
input (output) neighboring agents.

Each agentAi , solution to the ND-MPC problem,
can be decomposed in three parts: an optimizer, a
state predictor and an interaction predictor. At time
k, based on the exchanged information, the interac-
tion prediction together with the local measurement
is used by the optimizer to solve the MPC optimiza-
tion problem. Once computed the optimal sequence
{∆ui(k|k), . . . ,∆ui(k+m−1|k)}, which minimize the
cost function (4a), the first element∆ui(k|k) is selected
andui(k) = ui(k−1)+ ∆ui(k|k) is applied as control
input to Si . Then the state predictor computes an
estimate of the future state trajectory and broadcasts
the optimal control sequence over the control horizon
and the state predictions over the prediction horizon to
its output neighborhood.

The following assumptions are here considered:

Assumptions 1.

• prediction and control horizons are the same for
each agent;

• control agents are synchronous;
• control agents communicate only once within a

sampling interval;
• the communication channel introduces a delay of

a single sampling time.

Lemma 1.(Quadratic Program). Under the Assump-
tions 1, at stepk, each agentAi solution to the ND-
MPC problem, has to solve the following optimization
problem:

min
∆Ui(k,m|k)

Ji = ∆Ui(k,m|k)THi∆Ui(k,m|k)−GT
i ∆Ui(k,m|k).

(5)

where

Hi =NT
i Q̄iNi + R̄i , (6a)

Gi =2NT
i Q̄i [Yd

i (k+1, p|k)−Li x̂i(k|k)−Miui(k−1)+

−SiŴi(k, p|k−1)−TiV̂i(k, p|k−1)]. (6b)

The introduced matrices are used for computing the
output predictions:Li , Mi , Ni , Si depend only on the
system matricesAi , Bi andCi , matrix Ti introduces a
unit delay in the interaction vector and matricesQ̄i , R̄i

are made by a block replication of the local weighting
matricesQi , Ri . Equation (5) defines an unconstrained
Quadratic Program which has to be solved on-line at
each sampling instant.

For the sake of brevity, all the proofs of the results
stated in this paper are are omitted. Refer to Longhi
et al. (2005) and Vaccariniet al. (2006) for further
details.

3. STABILITY ANALYSIS OF ND-MPC

The main idea is to find an explicit solution for the
ND-MPC problem and to use it for obtaining a math-
ematical representation of the closed-loop system.
Once the closed-loop dynamic is known, the stability
condition can be verified by analyzing the dynamic
matrix.

For this purpose, denote with̃Ai , B̃i , C̃i , Āi and B̄i

proper local interaction matrices and with̃A, B̃, C̃,
Ā andB̄ their corresponding global stacked versions.
The gain of each MPC agent for the control effort
movement is represented byKi whereas matrixκi rep-
resents the gain for the magnitude of the local control
effort over the whole control horizonm. DefineI0 as
the matrix for selecting the first computed movements
from the optimal control sequence. Denote withL̄i ,
M̄i two state prediction matrices composed by sys-
tem matrices, and introduceI ′i as an auxiliary identity
block matrix. Assume thatL, M, L̄, M̄, S, T, I ′, κ are
diagonalizations of the local matricesLi , Mi , L̄i , M̄i ,
Si , Ti , I ′i , κi respectively and define:

θ , −κL, φ ,−κ
(
SÃ+TC̃

)
, (7a)

ρ , I ′I0−κ
(
MI0 +SB̃

)
. (7b)

Lemma 2.(Interaction Predictor). Under the Assump-
tions 1, at stepk, for each agentAi solution to the
ND-MPC problem, the predictions of the interaction
vectors are given by:

Ŵi(k, p|k−1) = ÃiX̂(k, p|k−1)+ B̃iU(k−1,m|k−1),
(8a)

V̂i(k, p|k−1) =C̃iX̂(k, p|k−1), (8b)

and the global prediction vectors take the following
form:

Ŵ(k, p|k−1) = ÃX̂(k, p|k−1)+ B̃U(k−1,m|k−1),
(9a)

V̂(k, p|k−1) =C̃X̂(k, p|k−1). (9b)



The stacked vectorsX(k, p|h) andU(k− 1,m|h) are
built with both the local estimations and the informa-
tion collected from the input neighborhood by agent
Ai . Null entries will correspond to the subsystems
which don’t belong to the input neighborhood. Note
that at timek, agentAi uses the predictions computed
and broadcasted at timek−1 {v̂i(k|k−1), . . . , v̂i(k+
p−1|k−1)} and{ŵi(k|k−1), . . . , ŵi(k+ p−1|k−1)}.

Lemma 3.(State Predictor). Under the Assumptions
1, at stepk, for each agentAi solution to the ND-
MPC problem, the decentralized state prediction for
the agentAi is expressed by:

X̂i(k+1, p|k) = L̄i x̂i(k|k)+ M̄iUi(k,m|k)+
+ ĀiX̂(k, p|k−1)+ B̄iU(k−1,m|k−1). (10)

and the decentralized prediction equation for the over-
all system is given by the matrix form:

X̂(k+1, p|k) = L̄x̂(k|k)+ M̄U(k,m|k)+
+ ĀX̂(k, p|k−1)+ B̄U(k−1,m|k−1). (11)

Lemma 4.(Explicit Solution). Under the Assumptions
1, at stepk, for each agentAi solution to the ND-MPC
problem, the explicit form of the control action applied
by the agentAi to the subsystemSi is given by:

ui(k) = (I −KiMi)ui(k−1)+

+Ki

[
Yd

i (k+1, p|k)−Li x̂i(k|k)
]
+

−KiSiŴi(k, p|k−1)−KiTiV̂i(k, p|k−1). (12)

Lemma 5.(Optimal Control Sequence). Under the As-
sumptions 1, at stepk, for each agentAi solution to
the ND-MPC problem, the expression of the optimal
control sequenceUi(k,m|k) is:

Ui(k,m|k) = I ′i ui(k−1)+

κi

[
Yd

i (k+1, p|k)−Lixi(k)−Miui(k−1)+

−SiŴi(k, p|k−1)−TiV̂i(k, p|k−1)
]
. (13)

and its global expression is:

U(k,m|k) = θ x̂(k|k)+φ X̂(k, p|k−1)
+ρU(k−1,m|k−1)+

+κYd(k+1, p|k). (14)

Theorem 1.(ND-MPC Stability).
The closed-loop system given by the feedback connec-
tion of the plantP with a solution of the ND-MPC
problem, composed by a set of independent agentsAi ,
i = 1, . . . ,n, is asymptotically stable if and only if:

∣∣∣∣∣∣∣∣
λ j








A 0 BI0 0
L̄ Ā M̄ B̄

θA+φ L̄ φ Ā ρ +θBI0 +φM̄ φ B̄
0 0 Imnu 0








∣∣∣∣∣∣∣∣
< 1,

∀ j ∈ [1, . . . ,nND], nND = pnx +nx +2mnu, (15)

where thenND is the order of the global closed-loop
system.

The first two block rows of the global closed loop dy-
namic matrix in Equation (15) are formed by elements
of matrix A (in the first two block columns) and matrix
B (in the remaining two block columns). The Third
block row is made by all the process matricesA, B and
C and the weighting matricesQi andRi and depends
also on the horizonsp andm.

4. CONTROL ALGORITHM

At sample timek, each agentAi , solution to the ND-
MPC problem:

(i) Acquires the measures.
(ii) Acquires the predicted future state trajectories

Xj(k, p|k− 1) and control inputsU j(k,m|k− 1)
from the neighboring agents and, once com-
bined with the local state trajectoryXi(k, p|k−
1) and the control inputUi(k,m|k−1), it builds
X(k, p|k− 1) and U(k,m|k− 1) and computes
the corresponding predictions of the interactions
(8a).

(iii) Computes the optimal control sequence (13).
(iv) Applies the first elementui(k) = I0

i Ui(k,m|k) of
the optimal sequenceUi(k,m|k) as control input
to Si .

(v) Computes the future state trajectory (10) of the
subsystemSi over the prediction horizonp
wherex̂i(k|k) = xi(k) is given by the measures.

(vi) Broadcasts the optimal sequenceUi(k,m|k) and
the predicted state trajectoryXi(k+1, p|k) to the
neighboring agents.

(vii) Iterates.

In the previous equations, the state predictionx̂i(k|k)
has been replaced with the actual statexi(k) because
of the hypothesis of fully accessible state.

The desired outputYd
i (k + 1, p|k) for the agentAi

is provided by a proper reference generatorRi that
can assume either known or unknown future desired
output.

5. NUMERICAL TESTS

In this section the proposed distributed control strat-
egy is applied to a testing process. Although different
weighting matrices can be used for each controller and
the control horizon can be smaller than the prediction
horizon, for simplifying the graphical representations,
equal prediction and control horizons (p = m) and
weighting matricesR= γInu andQ = Iny will be used.

The following unstable, non-minimum phase plantP
is considered for testing the presented tools.

[
y1(s)
y2(s)

]
=




−0.75
(s−1)(s+1)2

α
(s+1)

α
(s+5)

−0.375(s−2)
(s+1)2




[
u1(s)
u2(s)

]

(16)
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Fig. 1. Stability regions and maximum closed-loop
eigenvalues forα = 0.1 (a) and control perfor-
mances withγ = 0.01andp = 20 (b).

The corresponding discrete-time state-space realiza-
tion is decomposed in two SISO subsystems. Assum-
ing that inputu1 controls outputy1 and inputu2 con-
trols outputy2, the coefficientα represents a measure
of the interactions.

The maximum eigenvalues computed by the dynamic
matrices obtained with the previous stated theorems
are plotted in the three dimensional graphs of Figures
1(a), 2(a) and 3(a). The Z axis of these plots represents
the maximum eigenvalue for the centralized MPC
(dark gray surface) and the decentralized MPC with
communication (light gray surface). The X and Y
axis represent the logarithm of the weightγ and the
prediction horizonp, respectively. The corresponding
stable region (white surface) is represented in the
upside part of these plots both for the centralized
and the decentralized case. For each plant, the control
performances of ND-MPC (black lines) are compared
with the centralized MPC (gray lines) for a given
combination of the parameters, as shown in Figures
1(b), 2(b) and 3(b).
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Fig. 2. Stability regions and maximum closed-loop
eigenvalues forα = 0.5 (a) and control perfor-
mances withγ = 0.01andp = 20 (b).

In the proposed examples, which are a set within the
performed numerical tests, the stability performances
depend on the choice of the tuning parametersγ and
p. In particular the stability of the closed-loop system
is guaranteed for different combinations of the tun-
ing parameters. A wider range of tuning parameters
is available for weak interactions whereas a smaller
stability region characterizes plants with strong inter-
actions. At the same time, more weak are the inter-
actions, more ND-MPC shows control performances
similar to centralized MPC. Often, when MPC is sta-
ble, ND-MPC has the same maximum eigenvalues; in
some cases ND-MPC seems to be even better.

There are, of course, situations in which the closed
loop cannot be stabilized by the proposed decentral-
ized strategy. For example, when the interactions be-
come strong as in Figure 3, ND-MPC cannot stabilize
the process (for this reason it is not plotted in Figure
3) whereas MPC provide an acceptable set of stable
tuning parameters.
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Fig. 3. Stability regions and maximum closed-loop
eigenvalues forα = 2 (a) and control perfor-
mances withγ = 0.01andp = 30 (b).

6. CONCLUSIONS AND FUTURE WORKS

In this paper a stability analysis tool for tuning ND-
MPC architectures has been presented. The provided
examples show that the proposed ND-MPC can often
stabilize the process with a proper choice of the tuning
parameters. In these regions the maximum eigenvalues
approach that ones of the centralized case. However,
in some cases, ND-MPC is not able to stabilize the
process and other strategies must be considered.

In this work the unconstrained MPC for linear pro-
cess with accessible state has been considered. Fu-
ture works are needed for extending these conclu-
sions in the more general case of constrained MPC.
Techniques for obtaining explicit solutions in the con-
strained case have already been investigated in litera-
ture (Tøndelet al., 2003). Therefore, these techniques
can potentially be used for extending the proposed
approach to the constrained ND-MPC. Furthermore
also robustness results (Bemporad and Morari, 1999)
with respect to model uncertainties and disturbances

are needed. For instance, a study about the effect that
perturbations on the model matrices produce on the
closed-loop eigenvalues can be performed.
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