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Abstract: Some processes are naturally suitable to be controlled in a decentralized framework:
centralized control solutions are often infeasible in dealing with large scale plants and they
are technologically prohibitive when the processes are too fast for the available computational
resources. In these cases, the resulting control problem is usually split in many smaller
subproblems and the global requirements are guaranteed by means of a proper coordination.
The unconstrained decentralized case is here considered and a coordination strategy is
proposed for improving the global control performances. This paper present a tool for setting
up and tuning a nominally stable decentralized Model Predictive Controller. Numerical
examples are proposed for testing and validating the developed technique.
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1. INTRODUCTION Different solutions have been developed in literature.
The required coordination can be introduced by a hier-

. archical decentralized control scheme, where a super-
The current diffusion of networks allows the control i<, computes the global optimum and coordinates

technologies and methodologies to fully express their 5| the control agentsSiljak, 1996). A decentralized

potentials in many application fields. By means of the jering and control architecture managed by a global
fast communication technologies, nowadays different 4 ginator has been proposed by Katebi and Johnson
mdepender_wt contro_llers_ distributed in a wide area can (1997) for guaranteing steady state optimality of the
exchange information in order to improve both the o) actions. A different solution based on the team
Iog:al gnd th? global .control performances. Robotic 8P theory and asynchronous teams has been proposed in
plications with multiple autonorr)ous.agents pursuing Camponogara (2000). A decomposition of the global
a common goal, control applications in manufacturing qcess into subsystems, based on the structural prop-
and process industry where multiple units CoOpera- grjes and physical constraints, has been developed

tively make a product, supply chains in which multiple ;. ji5 and Krogh (2001), Cheng and Krogh (2001),
actors that influence each other are involved, and 'argeCamponogaraet al. (2002), Jia (2003), where each

scale power systems represent some typical situationsgent controls a subsystem making use of local model,

A decentralized control solution based on independentobjectives and constraints. Gueti al. (2004) investi-

agents is here considered for the regulation of dif- gated the identification procedure oriented to decen-
ferent interacting processes. Global objectives, suchtralized MPC. The effectiveness of the communication
as closed-loop stability and performance requirementsbased MPC and the importance of the interaction anal-

for the global process require coordination among the ysis for improving the control performances has been
control agents. validated in Venkaet al. (2005).



A partitioning of both actuators and sensors has beenon .# and the estimate of the interactions amao#fg
proposed by Motee and Sayyar-Rodsari (2003) as aand the other subsystent§;, j =1,...,n, j #i. The
solution for the problem of computational complexity resulting optimal sequence and the future prediction
for the use of MPC technology in large scale dynamic of the state over the prediction horizon, have to be
systems. Adopting a proper decentralized solution, theexchanged among subsystems through a Local Area
global computational effort can be reduced without Network (LAN).

significant degradations of the control performances As well known, Model Predictive Control acts accord-

and the fault tolerant issues can be improved (El-Farra. : . NS .
etal, 2004) ing to the receding horizon principle: at each sampling

time, using a predictive model of the system dynamics,
The functionalities of a Networked Decentralized the response of the process to changes in manipulated
Model Predictive Control solution (ND-MPC) have variables over a fixed horizon is predicted. Based on a
been recently tested on real plants with relatively proper cost function, a finite-horizon optimal control
strong interactions. The results obtained with the de- problem is solved to obtain current and future moves
centralized MPC of a gasifier seem to be satisfactory of the manipulated variables. Only the first computed
if compared with those obtained by the classical cen- move is applied to the real system. The same pro-
tralized MPC (Longhkt al,, 2005). Stability analysis  cedure is repeated at the next control step based on
tools for testing the stability of the ND-MPC archi- the new measurement. Although this computation is
tecture have been also proposed by Vaccasinal. an open-loop control problem, the receding horizon
(2006). principle allows MPC to generate a feedback-control

This paper summarizes the results on the stabilitylaw'

analysis developed by the authors and present a seLet consider a linear, discrete-time representation of a
of simulation tests to validate the proposed tool and plant.Z2:

to illustrate its use for the synthesis of decentralized

controllers with communication networks. After a de- X(k+ 1) =Ax(k) + Bu(k) (1a)
scription of the adopted ND-MPC strategy provided y(k) =Cx(K). (1b)

in Section 2, the stability analysis tool is presented

in Section 3. Based on the former considerations, theand denote withx € R™, u € R™, y(k) € R"™Y and
control algorithm is outlined in Section 4 and the tool yd € R, its state, control input, output and desired
is applied to the synthesis of decentralized controllers output, respectively. Suppose thzt is composed by
for a set of testing plants in Section 5. n subsystems”; whose state-space representation is:

In order to simplify the mathematical 'expressions, xi(k+1) = A (K) +Biti (k) +wi(k)  (2a)
some notations are here introduced. Given the num- (K) =G (K) +vi(K) (2b)
berske Z,he Z,meN, j €N,i €N, ne Nsuch that Yilk) =X i(K).

kzhjzlmzh-k+Li=1..,n where vectors;, u;, y; andy? are the local state, con-

e ||v||a £ ATvAis the norm of vectov induced by trol input, output and desired output respectively, and
matrix A; vectorsw; andvj, named state and output interaction
e Aj{A} is the j-th eigenvalue of a square matrix vectors, are given by:

o R(klh) £ & [x(k) |D"] is the (h—k)-step ahead wi(k) & iAan(kH % Biu (), (3a)
prediction ofx, given the measuremeny” up i=10) i=1(74)
to timek; n
o u(k/h) is the value ofu(k), computed at timé; wi(k) £ 5 Cijxj(k). (3b)
e Xi(k,mfh) is a stacked vector made by the vectors I=1(#)

X (k[h), ..., (k+m—1]h); - :
o X(k,mjh) is a stacked vector made by the vectors Definition 1.(ND-MPC). Given the plant% com-
Xy (k, ), ..., Xa(k,mh); posgd byn subsystems¥;, i :.1,...7n the uncon-
strained Networked Decentralized Model Predictive
Control problem with prediction horizop and con-
2 NETWORKED DECENTRALIZED MPC trol horizonm consists of finding, at timé&, a set of
independent agents{, i = 1,...,n, such that eachy

For achieving global performance objectives, a coor- Minimizes the local cost function

dination scheme based on communication among con- p
trol agents is developed. The control actions are com- J £ Z
puted by a set of subcontrollers which are independent =1
agents able to dynamically exchange a restricted set il .

of information. In the proposed control architecture, +|;HAU'(I(+I 71|k)HR;’ (4a)
each agent7 implements an MPC algorithm for the

subsystem¥; using both local information acquired subject, fodl =1,..., p, to the model constraint:

ik 11K~y k1K) o+



G (k1K) = B (k+ 1k — 1) + Gy % (KIK)+

|
+ Zlqi/\?ran Ui (k+1 —slk)+

+ ;ZCN

Definition 2.(Interaction). When a changes in input,
state or output variables of a subsystefhproduces
variations of input, state or output variables of a sub-
system], it is said that#; interacts with.#].

S (k+1 —sk—1). (4b)

Definition 3.(Connection). When the agent sends
information about the future behavior of subsystetn
to the agentyj, itis said thate is connected withy].

Definition 4.(Neighboring Agent). If the agent/ is
connected withesj, 4 is called input neighboring
agent of«/j and.«7] is called output neighboring agent
of #. o and.«] are said neighboring agents.

Definition 5.(Neighborhood of an Agent). The input

(output) neighborhood of an agen is the set of its
input (output) neighboring agents.

Each agente, solution to the ND-MPC problem,

can be decomposed in three parts: an optimizer, a

state predictor and an interaction predictor. At time

k, based on the exchanged information, the interac-

tion prediction together with the local measurement
is used by the optimizer to solve the MPC optimiza-

where

Hi =NTQINi + R, (6a)

Gi =2NTQ[Y% (k+ 1, plk) — Li%i (K|k) — Miui (k— 1)+
— SW (k, plk— 1) — TV (k, plk— 1)]. (6b)

The introduced matrices are used for computing the
output predictionsL;, M;, N;, § depend only on the
system matrice#y, B; andC;, matrix T; introduces a
unit delay in the interaction vector and matri€@s R,

are made by a block replication of the local weighting
matricesQ;, Ri. Equation (5) defines an unconstrained
Quadratic Program which has to be solved on-line at
each sampling instant.

For the sake of brevity, all the proofs of the results
stated in this paper are are omitted. Refer to Longhi
et al. (2005) and Vaccarinet al. (2006) for further
details.

3. STABILITY ANALYSIS OF ND-MPC

The main idea is to find an explicit solution for the
ND-MPC problem and to use it for obtaining a math-
ematical representation of the closed-loop system.
Once the closed-loop dynamic is known, the stability
condition can be verified by analyzing the dynamic
matrix.

For this purpose, denote with;, B;, G, K,-N and Bi
proper local interaction matrices and wify B, C,
A andB their corresponding global stacked versions.

tion problem. Once computed the optimal sequenceThe gain of each MPC agent for the control effort

{Au;(K|K), ...,Au (k+m—1|k)}, which minimize the
cost function (4a), the first elemett; (k|Kk) is selected
andu;j (k) = uj(k— 1) + Au; (k|k) is applied as control
input to .%. Then the state predictor computes an

movement is represented Bywhereas matrix; rep-
resents the gain for the magnitude of the local control
effort over the whole control horizom. Definel® as
the matrix for selecting the first computed movements

estimate of the future state trajectory and broadcastsfrom the optimal control sequence. Denote with
the optimal control sequence over the control horizon M; two state prediction matrices composed by sys-
and the state predictions over the prediction horizon to tem matrices, and introdudgas an auxiliary identity

its output neighborhood.

The following assumptions are here considered:

Assumptions 1.

[ )
each agent;

e control agents are synchronous;

e control agents communicate only once within a
sampling interval;

a single sampling time.

Lemma 1(Quadratic Program). Under the Assump-
tions 1, at stefk, each agents solution to the ND-
MPC problem, has to solve the following optimization
problem:

min J; = AU; (k, mlk) THiAU; (k, m[k) — GTAU; (k, m|Kk).
AU; (k,m[k)
)

prediction and control horizons are the same for

the communication channel introduces a delay of .

block matrix. Assume thdt, M, L, M, S T, I, k are
diagonalizations of the local matricés, M;, Lj, M;,

S, T, I{, ki respectively and define:
0= —kL, 92—k (SA+TC), (7a)
p21M°—k (MI°+SB). (7b)

Lemma 2(Interaction Predictor). Under the Assump-
tions 1, at stefk, for each agenk# solution to the
ND-MPC problem, the predictions of the interaction
vectors are given by:

Wi (k, plk—1) =AX (k, plk— 1) + BiU (k— 1,mlk — 1),
(8a)
Vi(k, plk— 1) =GiX (k, plk— 1), (8b)

and the global prediction vectors take the following

form:

W(k, plk—1) =AX (k, plk— 1) + BU(k— 1,m/k— 1),
(9a)

V(k, plk—1) =CX(k, plk—1). (9b)



The stacked vectorX(k, plh) andU (k — 1,m|h) are The first two block rows of the global closed loop dy-
built with both the local estimations and the informa- namic matrix in Equation (15) are formed by elements
tion collected from the input neighborhood by agent of matrix A (in the first two block columns) and matrix
<. Null entries will correspond to the subsystems B (in the remaining two block columns). The Third
which don’t belong to the input neighborhood. Note block row is made by all the process matride® and
that at timek, agents/ uses the predictions computed C and the weighting matriceQ; andR, and depends
and broadcasted at time— 1 {Vi(klk—1),...,V(k+ also on the horizonp andm.

p—1lk—1)} and{W;(klk—1),...,Wi(k+p—1lk—1)}.

Lemma 3(State Predictor). Under the Assumptions 4. CONTROL ALGORITHM

1, at stepk, for each agent# solution to the ND-

MPC problem, the decentralized state prediction for At sample timek, each agent#, solution to the ND-
the agent] is expressed by: MPC problem:

Xi(k+ 1, p|k) = Li%i (k|K) + M;U; (k, m]K)+ (i) Acquires the measures.

A X k plk—1)+BU(k—1,mk—1). (10 (i) Acquires the predicted future state trajectories
FAX(k ) +BU( | ). (10) Xj(k, plk— 1) and control inputsJ; (k,mk— 1)

and the decentralized prediction equation for the over- from the neighboring agents and, once com-
all system is given by the matrix form: bined with the local state trajectod (k, p|k —
X (k+ 1, p|k) = LR(k|K) + MU (k, mk)+ 1) and the control input); (k, mlk — 1), it builds

X(k,plk—1) andU(k,mk — 1) and computes
the corresponding predictions of the interactions
(8a).
(iif) Computes the optimal control sequence (13).
(iv) Applies the first element; (k) = 1°U; (k,m[k) of
the optimal sequendsd; (k,m|k) as control input
to 4.
u(k) = (I = KiMj) ui(k— 1)+ (v) Computes the future state trajectory (10) of the
. subsystem.; over the prediction horizorp
+Ki |(k+1, plk) - Lixi(k‘k)} T wherex; (k|k) = x; (k) is given by the measures.
—KiSW(k, plk—1) —KiTVi (k, plk—1). (12) (vi) Broadcasts the optimal sequendgk, mk) and
the predicted state trajectoXy(k+ 1, p|k) to the
Lemma 5(Optimal Control Sequence). Under the As- neighboring agents.
sumptions 1, at stek, for each agent# solution to  (vii) lterates.
the ND-MPC problem, the expression of the optimal
control sequenc¥; (k,mlk) is:

+AX(k, plk—1)+BU(k—1,mk—1). (11)

Lemma 4(Explicit Solution). Under the Assumptions
1, at stefk, for each agent solution to the ND-MPC
problem, the explicit form of the control action applied
by the agent# to the subsysten¥; is given by:

In the previous equations, the state predictig(i|k)
has been replaced with the actual stgté&) because
Ui(k,mk) = ljuj(k— 1)+ of the hypothesis of fully accessible state.

Ki [YO(k+1, p|k) — Lix; (K) — Miti (k— 1)+ The desired outpu¥(k + 1, p|k) for the agente
) R is provided by a proper reference generatrthat
—SWi(k, plk—1) = TiVi(k, plk — 1)} . (13)  can assume either known or unknown future desired
and its global expression is: output.
U (k,mk) = OR(KK) + @X (k, plk— 1)
+pU(k—1,mk—-1)+ 5. NUMERICAL TESTS
d
+KYE(k+3,pk). (14 5 this section the proposed distributed control strat-
egy is applied to a testing process. Although different

Theorem 1(ND-MPC Stability). weighting matrices can be used for each controller and
The closed-loop system given by the feedback connec- ghting

tion of the plantZ” with a solution of the ND-MPC the control horizon can be smaller than the prediction

. horizon, for simplifying the graphical representations,
problem, co_mposed by.a set ofmde.pendent ag%ts equal prediction and control horizonp € m) and
i=1,...,n, is asymptotically stable if and only if:

weighting matriceR = yl,,, andQ = I, will be used.

0
é % Els\;l_ g— The following unstable, non-minimum phase pla#t
Aj — 0 - = <1, is considered for testing the presented tools.
6A+ gL @A p+6BI"+ oM ¢B
—0.75 a
oo (9] _ |s-DE+1? (541 (9)
i _ yi(s)| _ | (s—1)(s+1 s+1 ui (s
Vjell,...,nnp], Nnp = Prc+nyx+2mny,  (15) [yZ(S)} = a —0.375(s—2) [UZ(S)]
where thenyp is the order of the global closed-loop (s+5) (s+1)2

system. (16)
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Fig. 1. Stability regions and maximum closed-loop Fig. 2. Stability regions and maximum closed-loop
eigenvalues for = 0.1 (a) and control perfor- eigenvalues for = 0.5 (a) and control perfor-
mances withy = 0.01andp = 20 (b). mances withy = 0.01andp = 20 (b).

The corresponding discrete-time state-space realiza-
tion is decomposed in two SISO subsystems. Assum-In the proposed examples, which are a set within the
ing that inputu; controls output/; and inputu, con- performed numerical tests, the stability performances
trols outputys, the coefficientr represents a measure depend on the choice of the tuning parameteand
of the interactions. p. In particular the stability of the closed-loop system
. . ._is guaranteed for different combinations of the tun-
The maximum eigenvalues computed by the dynamic. . .
. . X ) ing parameters. A wider range of tuning parameters
matrices obtained with the previous stated theorems. . . !
X . . . is available for weak interactions whereas a smaller
are plotted in the three dimensional graphs of Figures - . ; . .
. stability region characterizes plants with strong inter-
1(a), 2(a) and 3(a). The Z axis of these plots represents_ . . .
| . . actions. At the same time, more weak are the inter-
the maximum eigenvalue for the centralized MPC .
: . actions, more ND-MPC shows control performances
(dark gray surface) and the decentralized MPC with _." . : .
2 . similar to centralized MPC. Often, when MPC is sta-
communication (light gray surface). The X and Y . . .
: . . ble, ND-MPC has the same maximum eigenvalues; in
axis represent the logarithm of the weightind the
L . . . some cases ND-MPC seems to be even better.
prediction horizorp, respectively. The corresponding
stable region (white surface) is represented in the There are, of course, situations in which the closed
upside part of these plots both for the centralized loop cannot be stabilized by the proposed decentral-
and the decentralized case. For each plant, the controlzed strategy. For example, when the interactions be-
performances of ND-MPC (black lines) are compared come strong as in Figure 3, ND-MPC cannot stabilize
with the centralized MPC (gray lines) for a given the process (for this reason it is not plotted in Figure
combination of the parameters, as shown in Figures3) whereas MPC provide an acceptable set of stable
1(b), 2(b) and 3(b). tuning parameters.



MPC ND-MPC are needed. For instance, a study about the effect that
perturbations on the model matrices produce on the
closed-loop eigenvalues can be performed.
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