
This version is available at https://strathprints.strath.ac.uk/37772/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Aims

There is a strong need to design robust policy packages for emission reductions against a backdrop of significant uncertainties in energy scenarios (including fuel prices), technology costs and availability and regulatory framework (specifying the nature and ambition of any new international agreement on climate change). The inherent features of power generation investments and the electricity market-like interdependencies, lack of efficient electricity storage and transmission imply the need to add to the complexity of the problem.

In a situation like this, modelling and simulation has proven very useful. Models not only allow to explore the effects of different scenarios but also to assess the sustainable development of possible pathways towards an agreed end game in this case, a low carbon future.

We propose to develop an agent-based model of the UK electricity system to analyze and explore how policy interventions affect the behavior of organizations and the use of supply chains of the electricity sector. Our interdisciplinary team combines expertise in policy analysis, electricity and financial markets and agent-based modelling.

Policy Context and Rationale

Long-term targets for the reduction of carbon emissions have been central to the UK policy debate on climate change for a number of years. Following RCEP’s (2000) recommendations, the UK government adopted 60% CO2 reductions target by 2050 from 1990 levels in the Energy White Paper (EWP 2003). The EWP also outlined terms of references in reaching these targets, namely the need to maintain the competitiveness of the economy, reliability of energy supply and fuel affordability. Both the Stern Review (2006) and the Green Paper by the TTC (2007) emphasized the importance of government intervention as an incentive. They imply long-term, location and restructuring of the electricity sector.

Methodology

Agent-based modelling is the preferred methodology for two reasons:

1. Agent-based modelling allows for explicit consideration of strategic behaviour of individual organisations and customers and the resulting effects on the performance and evolution of the electricity sector in the UK.
2. The explicit consideration of organisational and customer behaviour within the models allows for assessing the nonlinear and complex interrelationship between policy interventions, market forces and customer preferences in the electricity sector.

Only recently, agent-based models have received attention as a potential tool for use in the electricity sector. In general, these models have specifically focused on wholesale power markets exploring the consequences of strategic behaviour of electricity generators to the quantity and price of electricity in the context of specific market rules and network infrastructures. The form of the agent-based model in this interdisciplinary research project is different from previous models developed, because it explicitly takes into consideration the complexities involved in large-scale transitions in infrastructures. Instead of only focusing on short-term operational behavior of generators or network operators, the model will take into account the organisational decisions and their shifts in customer preferences that have a high impact on the transition of the current electricity infrastructure towards one aligned with a low carbon future.

The role of uncertainty and innovation are two key aspects within this agent-based model. High-stake investment decisions are irrational and involve high levels of uncertainty. By means of an ABM approach, we will be able to model adaptive investment behaviours in a realistic way, to account for the heterogeneity among agents, and to explore the systemic effects of different strategies towards uncertainty in different scenarios. Secondly, the focus on a long-term transition requires explicit analysis of the role of innovation, both in terms of incremental learning as well as the introduction of disruptive technologies. In the electricity sector, explicit consideration will be given to the role of innovation in the transition towards a low carbon future.

Expected Outputs

The methodology developed within this highly interdisciplinary research project will make several unique contributions to the development of policy instruments for the UK electricity sector:

1. Broad platform to explore and develop robust policy interventions for a low carbon future in the UK.
2. Explicit consideration of the role of uncertainty and innovation in the long-term planning of the electricity sector.