Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Performance of periodic piezoelectric composite arrays incorporating a passive phase exhibiting anisotropic properties

O'Leary, R.L. and Parr, A.C.S. and Troge, A. and Pethrick, R.A. and Hayward, G. (2006) Performance of periodic piezoelectric composite arrays incorporating a passive phase exhibiting anisotropic properties. In: 2005 IEEE International Ultrasonics Symosium, 2005-09-18 - 2005-09-21.

[img]
Preview
PDF
QNDE_2006_Gachagan.pdf
Final Published Version

Download (2MB) | Preview

Abstract

This paper explores the minimisation of interelement cross talk in 1-D and 2-D periodic composite array structures through the incorporation of a passive phase exhibiting anisotropic elastic properties. Initially the PZFlex finite element code was used to monitor array aperture response as a function of material properties. It is shown that in array structures comprising passive polymer materials possessing low longitudinal loss and high shear loss, inter-element mechanical cross talk is reduced, without a concomitant reduction in element sensitivity. A number of polymer materials with the desired properties were synthesised and their elastic character confirmed through a program of materials characterisation. Finally, a range of experimental devices exhibiting improved directional response, as a result of a significant reduction in interelement cross talk, are presented and the predicted array characteristics are shown to compare favourably in each case.