Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Investigation of dissolved ozone production using plasma discharges in liquid

Espie, Steven and Marsili, S. and MacGregor, S.J. and Anderson, J.G. (2001) Investigation of dissolved ozone production using plasma discharges in liquid. In: 28th IEEE International Conference on Plasma Science/13th IEEE International Pulsed Power Conference, 2001-06-17 - 2001-06-22.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A pulsed plasma discharge system has been employed to allow the production of dissolved ozone in water test liquids. Ozone formation occurs through the application of high voltage pulses to test liquids sparged with a treatment gas. Upon application of high voltage pulses to the sparged test liquid, partial discharge activity and ionisation of the gas results. The partial discharge activity can also lead to complete breakdown of the gas and liquid medium. The resultant ionisation that occurs during plasma discharge activity allows substantial levels of ozone to be formed and to dissolve in the test liquid. This paper details results achieved showing the effect of treatment gas flow rates, pulse energy, and pulse repetition rates on the residual dissolved ozone content of water test liquids. In addition a comparative study of air and oxygen treatment is also presented.