Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

High-field lithium-7 nuclear magnetic resonance spectroscopic and cryoscopic relative molecular mass studies on solutions of amido- and imido-lithium compounds

REED, D and BARR, D and Mulvey, Robert and SNAITH, R (1986) High-field lithium-7 nuclear magnetic resonance spectroscopic and cryoscopic relative molecular mass studies on solutions of amido- and imido-lithium compounds. Journal of the Chemical Society, Dalton Transactions (3). pp. 557-564. ISSN 0300-9246

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

High-field lithium-7 n.m.r. spectroscopy and molecular mass measurements are shown to provide an important guideline into the nature of the species present in benzene and toluene solutions of a representative selection of amido- and imido-lithium derivatives. The compounds have solid-state structures ranging from hexameric to tetrameric clusters {[Ph(But)CNLi]6(3), [(Me2N)2CNLi]6(4), [Ph(Me2N)CNLi]6(5), to (Ph2CNLi·NC5H5)4(2)(NC5H5= pyridine)}, to trimeric and dimeric rings {[(PhCH2)2NLi]3(6) and (But2CNLi·hmpa)2(1)(hmpa = hexamethylphosphoramide), [(PhCH2)2NLi·OEt3]2(7), with probably n= 2 for [PhN(H)Li·hmpa]n(8), and [(C6H11)2NLi·hmpa]n(10)}, and to a likely monomer {[(Bun)(C5H5N)Li·2(NC5H8)]n(9)}, yet even more diverse behaviour has been detected in solution. Thus while some of the compounds essentially retain their solid association states [hexameric (3), (4), (5), dimeric (8), and monomeric (9)], others engage in concentration-dependent equilibria also involving monomeric species [tetrameric (2), trimeric (6), dimeric (1) and (10)], and one complex [dimeric (7)] loses donor on dissolution before rearranging to a trimer and a monomer.