Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

30 mu m spacing 519-electrode arrays for in vitro retinal studies

Gunning, D and Adams, C and Cunningham, W and Mathieson, K and O'Shea, V and Smith, KM and Chichilnisky, EJ and Litke, AM and Rahman, M (2005) 30 mu m spacing 519-electrode arrays for in vitro retinal studies. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 546 (1-2). pp. 148-153. ISSN 0168-9002

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

To understand how biological neural networks, such as the retina, process information, transparent microelectrode arrays have been made using the semiconductor indium tin oxide (ITO). These arrays have been used for in vitro biological experiments where it is possible to record simultaneously the action potentials from hundreds of retinal ganglion cells. To combat inefficient detection of a particular class of retinal output neuron, an array with 30μm spaced 519-electrodes has been developed. These arrays are characterised electrically before being employed in biological experiments. With a view to future higher density arrays, impedance and capacitance measurements were made over varying width, length and separation of ITO wires. These tests led to an equivalent circuit model representing electrode array characteristics. The results suggest array sizes of 2000 electrodes and beyond should be feasible.