Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Bonding implications of interatomic distances and ligand orientations in the iminolithium hexamers [LiNC(Ph)But]6 and [LiNC(Ph)NMe2]6: a stacked-ring approach to these and related oligomeric organolithium systems

BARR, D and CLEGG, W and Mulvey, Robert and SNAITH, R and WADE, K (1986) Bonding implications of interatomic distances and ligand orientations in the iminolithium hexamers [LiNC(Ph)But]6 and [LiNC(Ph)NMe2]6: a stacked-ring approach to these and related oligomeric organolithium systems. Journal of the Chemical Society, Chemical Communications (4). pp. 295-297. ISSN 0022-4936

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The ligand orientations and Li–N distances in the title compounds show that their µ-3-imino units NC(Ph)R (R = But or NMe2) function as 3-electron ligands, forming one 2-centre LiN bond and one 3-centre Li2N bond to isosceles triangles of bridged metal atoms, prompting treatment of each hexamer [LiNC(Ph)R]6 as a pair of stacked cyclic trimers [LiNC(Ph)R]3; extension of this ring-stacking principle allows many other structures to be rationalised in lithium chemistry and facilitates structural predictions.