5

(
Learning to Implement Floating-Point Algorithms on FPGAs Using High-Level Languages
Robin Bruce, Stephen Marshall, Malachy Devlin and Sébastien Vince
Abstract— FPGA-based reconfigurable computers can offer 10-1000 times speedup in many application domains over traditional microprocessor-based stored-program architectures. As a discipline, reconfigurable computing is in a period of change with little standards in place. It is becoming desirable to educate students in the principles of reconfigurable computing. This paper proposes that the abstraction benefits of high-level languages and floating-point arithmetic would shield students from the complexities of FPGA design and allow a syllabus with a greater focus on system-level aspects.
Index Terms— Field-programmable gate arrays, Floating-point arithmetic, Reconfigurable architectures, Electronics engineering education
I. INTRODUCTION
R
ECONFIGURABLE computers can offer significant performance advantages over microprocessor solutions thanks to their unique capabilities. High memory bandwidths and close coupling to input and output allow FPGA-based systems to offer 10-1000 times speed-up in certain application domains over traditional Von Neumann or Harvard stored-program architectures. Increasing chip densities mean that there now exists the potential to implement large, complex systems on a single chip. This increased potential for reconfigurable computers itself poses a problem. Creating increasing numbers of ever more complex systems requires an increasing number of highly qualified hardware designers. The traditional languages for hardware design, VHDL and Verilog, do not offer the productivity and abstraction necessary to be effective tools for reconfigurable computing. Furthermore, to fully capitalise on the potential computational benefits of FPGAs, they must be made accessible to the disparate groups present in the scientific computing community.

It is becoming desirable to educate students in the principles of FPGA-based reconfigurable computing. This is a challenging prospect as reconfigurable computing is not yet a fully established domain. This is despite the fact that FPGA-based reconfigurable computers have existed for nearly two decades. Standards do not yet exist, tools and technologies continue to evolve and tools that promise to simplify the process are still immature.
II. BACKGROUND

A. FPGA Floating-Point Comes of Age
The work presented in [1] and [2] sums up the research carried out to date on floating-point arithmetic as implemented on FPGAs. As well as this, these papers present extensions to the field of research that investigate the viability of double-precision arithmetic and seek up-to-date performance metrics for both single and double precision.

FPGAs have in recent times rivaled microprocessors when used to implement bit-level and integer-based algorithms. Many techniques have been developed that enable hardware developers to attain the performance levels of floating-point arithmetic. Through careful fixed-point design the same results can be obtained using a significantly of the hardware that would be necessary for a floating-point implementation. Floating-point implementations have been seen as bloated; a waste of valuable resource. Nevertheless, as the reconfigurable-computing user base grows, the same pressures that led to floating-point arithmetic logic units (ALUs) becoming standard in the microprocessor world are now being felt in the field of programmable-logic design. Floating-point performance in FPGAs now rivals that of microprocessors; certainly in the case of single-precision and with double-precision fast gaining ground. Single-precision floating-point performance in excess of 40 GFLOPS is now possible for the latest generation of FPGAs, such as Xilinx’s Virtex-4 family or Altera’s Stratix II family. Between one-quarter and one-third of this figure is possible for double-precision floating point. FPGAs are limited by peak FLOPS and not memory bandwidth for a wider range of key applications than are microprocessors.

Fully floating-point implemented designs offer great benefits to an enlarged reconfigurable-computing market. Reduced design time and far simplified verification are just two of the benefits that go a long way to addressing the issues of ever-decreasing design time and an increasing FPGA-design skills shortage. Everything implemented to date in this investigation has used single-precision floating point arithmetic.

B. Compilation of High-Level Languages to Hardware
Much effort is currently being expended to develop high-level language (HLL) compilers to implement algorithms in hardware. These languages are high-level with respect to the hardware description languages (HDLs) such as VHDL and Verilog. A development environment using HLLs can rapidly speed up the design process and reduce the verification effort when implementing algorithms. Many commercial products exist that offer such development environments to simplify algorithmic implementation on FPGAs. Reference [3] is an introductory survey of the tools currently available.
The algorithms implemented in hardware were realized using a Nallatech tool, DIME-C. DIME-C is a C-to-VHDL compiler. The “C” that can be compiled is a subset of ANSI C. This means that while not everything that can be compiled using a gcc compiler can be compiled to VHDL, all source code that can be compiled in DIME-C can also be compiled using a standard C compiler. This allows for rapid functional verification of algorithm code before it is compiled to VHDL.

Code is written as standard sequential C. The compiler aims to extract obvious parallelism within loop bodies as well as to pipeline loops wherever possible. In nested loops, only the innermost loop can be pipelined. The designer aims to minimize the nesting of loops as much as possible to have the bulk of operations being performed in the innermost loop.

One must also ensure that inner loops do not break any of the rules for pipelining. The code must be non-recursive, and memory elements must not be accessed more times per cycle than can be accommodated by that particular memory structure. Variables stored in registers in the fabric can be accessed at will, whereas locally declared arrays stored in dual-ported blockRAM are limited to two accesses per cycle. SRAM and blockRAM-stored input/output arrays are limited to one access per clock cycle. Beyond these considerations the user does not need any knowledge of hardware design in order to produce VHDL code of pipelined architectures that implement algorithms.

DIME-C supports bit-level, integer and floating-point arithmetic. The floating-point arithmetic is implemented using Nallatech’s floating-point library modules.

Another key feature of DIME-C is the fact that the compiler seeks to exploit the essentially serial nature of the programs to resource share between sections of the code that do not execute concurrently. This can allow for complex algorithms to be implemented that demand many floating-point operations, provided that no concurrently executing code aims to use more resources than are available on the device.

C. The Vector, Signal and Image Processing Library
The issues discussed here have arisen in the course of an ongoing effort to implement the Vector, Signal and Image Processing Library (VSIPL) application programming interface (API) using FPGAs as the main computational element. High-level languages that compile and synthesize to hardware are used as the main development tool. [4],[5] VSIPL is an API aimed primarily at the high-performance embedded computing (HPEC) community, though the lessons being learned in its implementation are equally valid to high-performance computing in general. The guiding principle of this research, like that of reconfigurable computing in general, is to provide application developers with significant abstraction from the complexities of FPGA design, whilst simultaneously leveraging to the maximum possible extent their exceptional computational capacities.
III. Programming FPGA-Centric Reconfigurable Computers
A. Design Environment

There are numerous commercial efforts presently underway with the intent of capitalizing on the computational possibilities offered by FPGAs. SRC Computers, Cray, SGI and Starbridge all have reconfigurable computing platforms that use FPGAs for compute-intensive applications. [6]-[9].

At present, the four major players have very different approaches to implementing applications on FPGAs. SRC’s Carte development environment arguably, of the four approaches, offers the greatest abstraction of the FPGA to application developers. When programming the SRC-6, developers manually partition the code between microprocessors and FPGAs. Microprocessor code is written in ANSI C and compiled using a standard C compiler. Code to be executed on the FPGA is written in a C variant suited for inferring FPGA functions. This code is compiled and synthesized down to a bitfile. A single programming environment handles all compilation, synthesis and linking necessary to produce a single executable that runs the application desired. Fouts et al implemented a system to create false images to confuse radar systems using the SRC-6E reconfigurable computer. [12] Two of their conclusions in using this method of development were that:

“The SRC-6E compiler allows C programmers to utilize the [FPGA board] without having to become circuit designers.”

“Porting code to the [FPGA board] requires basic knowledge of the hardware.”
Conceptually, the approach taken presently in the VSIPL efforts, namely to implement reconfigurable computing using Nallatech tools and hardware, has more in common with SRC’s approach than with any of the other big players. The hardware platform used in the investigations presented here consisted of a standard personal computer running either the Windows or Linux operating systems. Connected to this computer was a Nallatech multi-FPGA motherboard.
The programming model for this system is detailed overleaf in figure 1. The first step in running an application in this reconfigurable computing environment is to have a working version of the application running in software. The compute intensive portion of the application is then transferred to the DIME-C environment. This essentially makes up the SW/HW partitioning process. This is generally an iterative process in practice. First one writes the code in ANSI C. One then brings the code to be compiled to hardware over to the DIME-C environment. Here one removes any language constructs not supported by DIME-C syntax and adapts the code to achieve the highest possible performance. The difference between non-optimized and optimized DIME-C code can be 3 or more orders of magnitude in terms of performance. The tools inform the user of the parallelism and extent of pipelining in their code, as well as the resources required on the Xilinx FPGA technology being targeted. Once the code is satisfactorily optimized and compiling successfully it is useful to return to the ANSI C environment. Here one can test that the adaptation process has not changed the functionality of the code, as DIME-C code will compile using a standard ANSI C compiler. When the code is passing functionality tests in the ANSI C environment and compiling in DIME-C, one is effectively left with the DIME-C equivalent of an object file: VHDL and EDIF files that describe the computational unit to be implemented in hardware.

[image: image1]Figure 1 – Programming model for reconfigurable computing using Nallatech tools and hardware
The next stage in the process is to create a DIMETalk network incorporating these files, grouped together as a DIMETalk component. This links the hardware-implemented component to its associated memory banks and control logic. The memory banks and control logic are connected with the host over a packet-switched network. The building of this network takes a few minutes. Once the DIMETalk network is complete, the build process is started, calling on Xilinx’s ISE software to create the bitfile necessary to program the FPGA. This can take from tens of minutes to several hours, depending on the complexity of the design and the target operating frequency chosen.

Parallel to this process, the portion of the application to be run in software, together with its interfaces to the FPGA-board, are compiled and linked to produce an executable file. Having both the executable and the bitfile and with the host connected to the hardware, the application can be run and tested. Figure 2 below shows the control and data transfer for a simplistic application.

[image: image2]
Figure 2 – Simple model of a program running on a reconfigurable computing platform

B. Experiences Introducing Non-Hardware Engineers to Reconfigurable Computing Using FPGAs

Figure 3a overleaf shows an idealized vision of programming a reconfigurable platform. Figure 3b shows some of the challenges facing a reconfigurable-computer programmer at present. These may look daunting, but programming with high-level languages and tools abstracts away a great many complications of FPGA design.

A student working towards his Master’s Degree in Electronic and Electrical Engineering at the University of Strathclyde was enlisted to help with the project. The student had little to no knowledge of FPGAs and their associated issues, nor had he any knowledge of VHDL. However, the student was familiar with the C programming language. What follows is a summary of the conceptual hurdles that had to be overcome in order to achieve productivity. While working on the project the student implemented a number of functions, one example of which being the 2-dimensional Fast-Fourier Transform (2DFFT).

Sequential Nature of Software:

The student found it difficult initially to understand that code that looked exactly like ANSI C code would not run sequentially on hardware, but instead would be pipelined and in parallel wherever possible. An iteration of a pipelined for loop with a latency of 100 cycles would be only 1% complete by the time the next iteration of the loop began. It was vital to communicate the notion that a loop iteration could potentially request data that had not yet been written back from a previous iteration. Therefore, the same code that worked in ANSI could fail on hardware for this reason.

[image: image3]
Figure 3a – Idealized view of programming FPGA-based reconfigurable computers

[image: image4]
Figure 3b – Realistic view of programming FPGA-based reconfigurable computers
Resource Use:

In the student’s previous experience it had never been necessary to worry about the size of a program or the amount of memory it required to run. However, in the FPGA world these are still important issues. Resources, though increasing in abundance with each technological generation, are still relatively scarce. The amount of RAM implemented as hard blocks on the silicon is limited, as is the number of 18x18 multipliers needed to perform integer multiplication or to construct floating point multipliers. The amount of logic available, in the form of ‘slices’ in Xilinx technology, is limited. These are required for creating integer and floating-point arithmetic blocks, assignments, comparators and to build the control logic that runs the algorithms.
Data Transfers:

Again, for the first time, it became necessary to think about the nature of the link between the host and the FPGA board and the latency and data bandwidth between the two. It becomes necessary to weigh up the time penalty in data transfer to determine whether, following hardware speedup, an overall processing gain will be made. Amdahl’s law is a good empirical observation to facilitate an understanding of this concept.

Design of Pipelined Algorithms:

The subtleties in designing a pipelined for loop are difficult at first to grasp. One must avoid inter-iteration dependencies on data, feedback loops as it were. To achieve the maximum possible level of performance one must make every effort to fuse nested loops together, as only the innermost loop can be pipelined. One must ensure that memory arrays are not accessed more times per loop iteration than the memory can accommodate. That is to say that one read/write operation per cycle for single-ported RAM, two for dual-ported RAM and unlimited reads but only one write for scalar quantities. When accessing arrays with an index other than an incremental index variable, care should be taken to ensure there are no data clashes. The idioms of high-level languages that infer pipelined architectures are subtle but powerful and must be learned.
Organizing Heterogeneous Memory Structures:

In the system there are effectively four classes of memory storage, and each is treated in a different manner. Block RAM arrays are single-ported when passed as a parameter to the top level of a DIME-C function, but dual-ported when declared in the body of a DIME-C function. SRAM is always single-ported. Scalar quantities are stored as distributed RAM using the soft logic resources of the FPGA and should be treated differently from the arrays.

These particularities of FPGA-based reconfigurable computing posed the greatest difficulty in shifting from the software paradigm.
IV. Syllabus and Laboratory Teaching

Deciding upon a syllabus for teaching reconfigurable computing is beyond the scope of this paper. Gokhale’s book, [13], seems to be an ideal starting point to developing a syllabus.

The work presented here has more relevance to the approach that should be taken to laboratory teaching. Abstractions offered by high-level tools allow users to avoid becoming aware of all the fine details of FPGA Design. These involve issues such as design creation in VHDL, simulation of the design using HDLs, synthesis-related issues, FPGA interface issues, timing issues, implementation of memory controllers and pipeline retiming. Using tools such as DIME-C in combination with DIMETalk or SRC’s MAP compiler, these issues can be avoided and more time can be spent focusing on the system-level aspects and the actual algorithm being implemented.

Implementing floating-point algorithms as part of laboratory exercises has the advantage that relatively complicated algorithms could be implemented on the reconfigurable computer without having to pay attention to the additional detail required for a fixed-point implementation to avoid overflow and underflow. An example laboratory question that could be realistically carried out within the time constraints of a three-hour lab is now presented:
Example Laboratory Exercise:

Implement a 7th degree approximation of the Taylor-series expansion, shown below, for the exponential function.

First implement the function in ANSI C with the following function header:
void (float * x_in, float * y_out, unsigned int N)
where x_in is an array of input values to the exponential approximation and y_out is the array where the results of the approximation will be stored. N is the size of both of these arrays. Test the function by passing the function an array of random data in the range [0,250] and outputting the error between the approximation and the math.h library function exp().

[image: image5.png]L forallz
n

Next implement the same function in DIME-C aiming to have a single code body that is fully pipelined. Consider that the input and output arrays are stored in SRAM. Recompile the DIME-C code as ANSI C and test to confirm correct functionality. Create a DIMETalk network and build to obtain a bitfile. Adapt ANSI C program to test the function on the hardware. Confirm functionality and measure the time taken for the hardware-implemented functions to process the following array sizes N: 1, 10, 100, 1000, 10000, 100000, and 1000000. Repeat for the software-implemented functions and obtain the speed-up ratio.
V. Conclusions

It is clear that people having previous experience of software only can learn to develop applications on these reconfigurable computers but the transition is not as smooth as many of the exponents of reconfigurable computers would hope.

The bar of abstraction has been raised as the more delicate tasks in designing FPGA-based systems have been automated and wrapped up in high-level tools, but there remains much work to be done. An understanding of the system parameters are still needed to successfully deploy algorithms on the reconfigurable computer. While one can effectively write programs in software with virtually no understanding of the structure and operation of a microprocessor, this is not yet possible with FPGA-based systems. To successfully educate a non-hardware engineer to program a reconfigurable computer has required extensive support. Often it has been necessary to work in tandem on problems to teach the subtleties and language idioms that can provide several orders of magnitude increase in performance.

Educational content needs to be future-proof. The field is undergoing a period of rapid change. Any system put in place for the purposes of education is likely to be instantly obsolete. It is very unlikely that students would later work using the same computers and tools that they used as students. Systems and tools should therefore be selected that provide experience in aspects of reconfigurable computing that are foreseen to be vital to success in future reconfigurable computing systems.

Regarding the best approach to teaching matters of reconfigurable computing to students in an academic setting, one must conclude that the importance of having lecturers and lab assistants with extensive experience of the tools and design processes of reconfigurable computing is paramount. Building a course around tools, presentations, hardware and tutorials acquired from industrial sponsors will be ineffective if the individual conceptual difficulties of each student are not sought out and addressed.
References

[1] Underwood K, Hemmert K, Closing the gap: CPU and FPGA trends in sustainable floating-point BLAS performance, Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on (2004), pp. 219-228.

[2] K. D. Underwood. FPGAs vs. CPUs: Trends in peak floating-point performance. In Proceedings of the ACM International Symposium on Field Programmable Gate Arrays, Monterrey, CA, February 2004.

[3] Brian Holland, Mauricio Vacas, Vikas Aggarwal, Ryan DeVille, Ian Troxel, and Alan D. George. Survey of C-based Application Mapping Tools for Reconfigurable Computing. Military and Aerospace Programmable Logic Devices International Conference, Washington DC, September 2005

[4] Devlin M, Bruce R, Marshall S. Implementation of Floating-Point VSIPL Functions on FPGA-Based Reconfigurable Computers Using High-Level Languages. Military and Aerospace Programmable Logic Devices International Conference, Washington DC, September 2005

[5] Bruce R, Marshall S, Devlin M. Implementation of Floating-Point Vector Signal Image Processing Library Functions on FPGA-Based Reconfigurable Computers Using High-Level Languages. ICSP Research Colloquium, October 2005. Proceedings
[6] MR Fahey et al. Early Evaluation of the Cray XD1 Proceedings Cray User Group Meeting, 2005.
[7] Smith MC, Vetter JS, Liang X. Accelerating Scientific Applications with the SRC-6 Reconfigurable Computer: Methodologies and Analysis. Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International (2005), pp. 157b-157b.
[8] T Hauser. A Flow Solver for a Reconfigurable FPGA-Based Hypercomputer. 43 rd AIAA Aerospace Sciences Meeting and Exhibit, 2005
[9] SGI: Reconfigurable Computing and RASC http://www.sgi.com/company_info/newsroom/press_releases/2005/september/rasc.html
[10] Kris Gaj. Performance of Reconfigurable Supercomputers. Reconfigurable Systems Summer Institute 2005, NCSA.
[11] Jonathan F. Feifarek and Timothy C. Gallagher. An FPGA Based Processor for Hubble Space Telescope Autonomous Docking – a Case Study. Military and Aerospace Programmable Logic Devices International Conference, Washington DC, September 2005
[12] Douglas J. Fouts, LT Kendrick R. Macklin, and Daniel P. Zulaica. Synthesis of False Target Radar Images Using a Reconfigurable Computer. Military and Aerospace Programmable Logic Devices International Conference, Washington DC, September 2005
[13] Maya Gokhale, Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays
SW/HW Partitioning

Bitfile

DIMETalk

Executable

Linker

DIMETalk Network

DIMETalk Component

Object Files

DIME-C

Compiler

ANSI C Compiler

DIME-C Code

ANSI C Code

HW/SW Partitioning

ANSI C Compilation and Test

Application Coded in ANSI C

Function

Program Entry

Function

Program Entry

Organizing

Heterogeneous

Memory Structures

Data Transfers

SW/HW Interface

Managing FPGA Resources

Design of Pipelined Algorithms

FPGA Board

Host Computer

Receive Output Data

Send Output Data

Compute, Signal Done

Receive Input Data

Start HW, Wait Done

Transfer Input Data

Initialise FPGA Board

Choice of Target Operating Frequency

Manuscript received February 19, 2005. This work was sponsored by Nallatech Ltd. and was carried out in conjunction with the Image Processing Group of the Department of Electronic and Electrical Engineering at the University of Strathclyde. Additional funding was provided by the UK Engineering and Physical Science Research Council in conjunction with the Institute for System-Level Integration.

Robin Bruce is with the Institute for System-Level Integration, Alba Centre, Alba Campus, Livingston, EH54 7EG, UK, (phone: +44(0)117-377-2313; fax: +44(0)117-904-0099; e-mail: � HYPERLINK "mailto:robin.bruce@sli-institute.ac.uk" ��robin.bruce@sli-institute.ac.uk�).

Malachy Devlin is with Nallatech Ltd., Boolean House, 1 Napier Park, Glasgow, UK, G68 0BH (e-mail: � HYPERLINK "mailto:m.devlin@nallatech.com" ��m.devlin@nallatech.com�).

Stephen Marshall is with the University of Strathclyde, 204 George Street, Glasgow, UK G1 1XW (e-mail: � HYPERLINK "mailto:s.marshall@eee.strath.ac.uk" ��s.marshall@eee.strath.ac.uk�).

Sébastien Vince is with the Institut National des Sciences Appliquées, Rennes, France (e-mail : � HYPERLINK "mailto:sebastien.vince@ens.insa-rennes.fr" ��sebastien.vince@ens.insa-rennes.fr�)

