Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Waveguide surface plasmon resonance studies of surface reactions on gold electrodes

Sheridan, A.K. (2002) Waveguide surface plasmon resonance studies of surface reactions on gold electrodes. Faraday Discussions, 121. pp. 139-152. ISSN 1359-6640

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe the fabrication and characterisation of gold-coated graded index channel waveguide sensors designed for simultaneous electrochemical and surface plasmon resonance studies. The active sensing electrode area is a thin gold film between 0.5 and 5 mm in length and 200 µm wide deposited on top of a 3 µm wide waveguide which forms one arm of a Y-junction while the other arm of the Y-junction serves as a reference. Using these devices we have measured simultaneously the changes in transmittance through the device whilst carrying out cyclic voltammetry in either sulfuric or perchloric acid solution or during the deposition of an UPD layer of copper at the gold surface. In all cases we obtain stable and reproducible results which demonstrate the very high sensitivity of the devices to sub-monolayer changes occurring at the gold electrode surface. The response of these integrated optoelectrochemical devices is discussed in terms of a numerical model for the propagation of light within the waveguide structure.