Picture of classic books on shelf

Literary linguistics: Open Access research in English language

Strathprints makes available Open Access scholarly outputs by English Studies at Strathclyde. Particular research specialisms include literary linguistics, the study of literary texts using techniques drawn from linguistics and cognitive science.

The team also demonstrates research expertise in Renaissance studies, researching Renaissance literature, the history of ideas and language and cultural history. English hosts the Centre for Literature, Culture & Place which explores literature and its relationships with geography, space, landscape, travel, architecture, and the environment.

Explore all Strathclyde Open Access research...

All-optical processing in switching networks

Glesk, I. (2002) All-optical processing in switching networks. IEEE Lasers and Electro-Optics Society Annual Meeting. ISSN 1092-8081

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the backbone of today’s high performance networks, optical fibers provide enormous point-to-point communications capacity. With the deployment of DWDM equipment, aggregate throughputs on the order of a few Tbps per fiber are being achieved [1]. However, despite the recent success of fiber optics, it has so far been used primarily as a low loss, high bandwidth replacement to electrical cable in point-to-point transmission links. In these systems, optical signals are usually converted to the electrical domain at intermediate nodes in order to perform switching and signal processing. For example, in the Internet, electronic switches are used to route packets to their destinations. However, in this approach, the maximum serial line rate is limited by the bandwidth of electronics, which is considerably less than the bandwidth available in optical fiber. In effect, an “electronic bottleneck” is created in the system. This article summarizes the research efforts at Princeton University towards the development of network nodes capable of all-optical signal processing and routing.