Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

All-optical processing in switching networks

Glesk, I. (2002) All-optical processing in switching networks. IEEE Lasers and Electro-Optics Society Annual Meeting. ISSN 1092-8081

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the backbone of today’s high performance networks, optical fibers provide enormous point-to-point communications capacity. With the deployment of DWDM equipment, aggregate throughputs on the order of a few Tbps per fiber are being achieved [1]. However, despite the recent success of fiber optics, it has so far been used primarily as a low loss, high bandwidth replacement to electrical cable in point-to-point transmission links. In these systems, optical signals are usually converted to the electrical domain at intermediate nodes in order to perform switching and signal processing. For example, in the Internet, electronic switches are used to route packets to their destinations. However, in this approach, the maximum serial line rate is limited by the bandwidth of electronics, which is considerably less than the bandwidth available in optical fiber. In effect, an “electronic bottleneck” is created in the system. This article summarizes the research efforts at Princeton University towards the development of network nodes capable of all-optical signal processing and routing.