Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

All-optical processing in switching networks

Glesk, I. (2002) All-optical processing in switching networks. IEEE Lasers and Electro-Optics Society Annual Meeting. ISSN 1092-8081

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the backbone of today’s high performance networks, optical fibers provide enormous point-to-point communications capacity. With the deployment of DWDM equipment, aggregate throughputs on the order of a few Tbps per fiber are being achieved [1]. However, despite the recent success of fiber optics, it has so far been used primarily as a low loss, high bandwidth replacement to electrical cable in point-to-point transmission links. In these systems, optical signals are usually converted to the electrical domain at intermediate nodes in order to perform switching and signal processing. For example, in the Internet, electronic switches are used to route packets to their destinations. However, in this approach, the maximum serial line rate is limited by the bandwidth of electronics, which is considerably less than the bandwidth available in optical fiber. In effect, an “electronic bottleneck” is created in the system. This article summarizes the research efforts at Princeton University towards the development of network nodes capable of all-optical signal processing and routing.