Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Holographic power-law traps for the efficient production of Bose-Einstein condensates

Bruce, Graham D. and Bromley, Sarah L. and Smirne, Giuseppe and Torralbo-Campo, Lara and Cassettari, Donatella (2011) Holographic power-law traps for the efficient production of Bose-Einstein condensates. Physical Review A, 84 (5). -. ISSN 1094-1622

Full text not available in this repository. Request a copy from the Strathclyde author


We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a power law from a central maximum with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates (BECs) in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental parameters are used to verify the capability of this approach in producing larger BECs than by evaporative cooling alone.