Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Two-photon excited fluorescence in rare-earth doped optical fiber for applications in distributed sensing of temperature

Dalzell, Craig J. and Han, Thomas P. J. and Ruddock, Ivan S. and Hollis, David B. (2012) Two-photon excited fluorescence in rare-earth doped optical fiber for applications in distributed sensing of temperature. IEEE Sensors Journal, 12 (1). pp. 51-54. ISSN 1530-437X

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Distributed temperature sensing based on time-correlated two-photon excited fluorescence (TPF) in doped optical fiber is described. Counter-propagating laser pulses generate a TPF flash at the position of their overlap which is scanned along the fiber by a variable relative time delay. The flash is transmitted to one end where it is detected and analyzed to yield the temperature from its thermal dependence. To identify suitable dopants, the two-photon excitation spectra of glass doped with various rare-earths were recorded. Preliminary results on TPF in praseodymium doped single-mode fiber are presented.