
Automatically Detecting Neighbourhood
Constraint Interactions using Comet

Alastair Andrew

University of Strathclyde, Glasgow, G1 1XH, UK
alastair.andrew@cis.strath.ac.uk

Abstract. Recently there has been an interest in easing the implemen-
tation of Local Search algorithms through the development of specialised
languages and frameworks. There has also been an integration of Con-
straint Programming ideas into Local Search in the form of the language
Comet [1]. This combination of Local Search with constraints allows us
to explore whether Local Search neighbourhoods effect constraints in a
predictable fashion. We have implemented a system in Comet that can
detect which neighbourhoods interact with constraints in the Interna-
tional Timetabling Competition problem instances. The aim is that this
interaction information can be used to simplify the creation of multi-
phase algorithms or highlight potentially redundant constraints. The re-
sults from these preliminary experiments have been encouraging and
show the viability of completely automating neighbourhood constraint
interaction detection.

1 Introduction

From almost the very beginnings of Computer Science in the 1940s re-
searchers have been fascinated with trying to develop systems which
think intelligently. There are many different facets of intelligence but one
of the most compelling is the power to reason about the consequences
of one’s decisions. The Automated Planning community in particular re-
lies heavily on this ability to rationalise the effects of the actions one
executes. For traditional Local Search algorithms the effect of exploring
a particular neighbourhood is less well defined. The exploration of the
search space is guided by an acceptance function which assesses each of
the neighbouring solutions based upon their fitness value. Many differ-
ent strategies exist for implementing these acceptance functions but since
the fitness value is typically a single numerical value there is little rea-
soning that can be done. Solutions which improve on the current fitness
are usually accepted. Some meta-heuristics such as Simulated Annealing
have the ability to accept non improving solutions in order to achieve
greater diversification. We predict that more expressive algorithms could
be developed if the search had additional fitness information rather than
a single homogenous fitness value.
A recent trend in the Local Search field is the move towards Constraint-
Based Local Search spearheaded by Van Hentenryck and Michel with
their development of the language Comet. Constraint-Based Local Search
is a hybrid of Constraint Programming (CP) and Local Search paradigms



2

which allows the accurate modelling of a problem whilst providing fea-
tures which simplify writing different search strategies. Of prime interest
to us is the ability to maintain a count of the violations of the problem
constraints independent of each other. This additional information can
be used to determine whether a solution is actually an improvement. For
example if a move is evaluated and increases the total number of con-
straint violations yet reduces the hard constraint violations, bringing the
solution closer to feasibility, should this still be considered a worsening
move?
The exploitation of constraint neighbourhood interaction underpins multi-
phase algorithms such as Kostuch’s winning entry [2] in the first Interna-
tional Timetabling Competition (ITC)1. The approach taken was to find
a feasible solution which satisfied the hard constraints of the problem
and then only explore other feasible solutions when trying to optimise
the soft constraints. The choice of neighbourhoods for the optimisation
phase guaranteed that the neighbours searched would still be feasible.
The selection of these neighbourhoods and the observation that they
did not interact with the hard constraints was based upon human intu-
ition and highlights Kostuch’s skill as algorithm designer. Our system
seeks to aid the algorithm designer by automatically highlighting these
constraint neighbourhood relationships thus simplifying the creation of
effective multi-phase algorithms. In problems with multiple constraints
spotting potentially beneficial interactions is by no means trivial. Our
system can also be used to indicate whether a constraint model can be
optimised, if the search neighbourhoods do not effect a constraint then,
as long as the initial solution satisfies it, the constraint is not required
since the search will never be able to introduce a violation. Van Hen-
tenryck and Michel trim out an unnecessary constraint from their Magic
Square implementation [1, p. 45] by exploiting their knowledge of how
the search will interact with the problem model.

2 Experiment

The problem chosen for experimental analysis was the Post Enrolment
Based Course Timetabling problem which formed the second track in the
2nd International Timetabling Competition2. This problem was specif-
ically designed to be a fair representation of timetabling problems and
contains a variety of hard and soft constraints which are listed in Fig-
ure 1.
Most of the neighbourhoods were constructed following the example of Di
Gaspero and Schaerf who competed in the first ITC using a system which
searched multiple composed neighbourhoods [3]. This work seeks to com-
plement the automatic creation of neighbourhoods with the automatic
detection of their effects. When running the experiment we used seven
neighbourhoods. The two atomic neighbourhoods, Move Event Timeslot
and Move Event Room, were combined to create the composite neigh-
bourhood Move Event Room & Timeslot. Similarly Swap Event Timeslot

1 http://www.idsia.ch/Files/ttcomp2002/
2 http://www.cs.qub.ac.uk/itc2007/



3

– Hard Constraints
c1 No student attends more than one event at the same time.
c2 Events can only be placed in room with sufficient capacity / features.
c3 Only one event can be in a room during a given timeslot.
c4 Events can only be in timeslot pre-defined as available.
c5 If specified, events must be scheduled in the correct order.

– Soft Constraints
c6 Where possible events should not occur in the final timeslot of a day.
c7 Students should not attend more than two consecutive events.
c8 Students should never have only one event on a day.

Fig. 1: The post enrolment based course timetabling problem constraints.

and Swap Event Room gave rise to the Swap Event Room & Timeslot
neighbourhood. The final neighbourhood, Swap All Event Timeslots, ex-
changes all the timeslots of all the events currently placed within the
chosen timeslots.

3 Approach

We propose that simulation can be used to automatically detected the in-
teractions between problem constraints and the search neighbourhoods.
By monitoring the state of the constraint violations before a move is
selected and then comparing it with the resulting state we can gain a
partial picture of which constraints can be effected. Clearly if selecting
a move within a neighbourhood leads to the alteration of the constraint
violations then that neighbourhood can effect a change. Our implemen-
tation contains some interesting design choices. Firstly we use multi-
pleConstraintSystem objects, one for each of the 8 problem constraints.
We then assign the incremental variable of the ConstraintSystem viola-
tions to an array, constraintViolations, which is indexed by an enum

value unique to that constraint. The neighbourhoods are represented as
objects which contain a main method specifying how a move is per-
formed. As well as the main method and other related search methods
there is also the capability to pass an enum to the interactsWith()

method which stores relationships in a set.
Comet has an advanced system for the handling of events. Any incremen-
tal variable in a Comet program can have an event listener attached. An
event listener can trigger a block of code when it catches the event. Comet
uses this system primarily to ease the implementation of meta-heuristics
such as Tabu Search and also for updating GUIs. In this implementation
we used the @changes() listener attached to the variable representing
the number of violations of each constraint. The simulation code can
be seen in Figure 2, of particular interest is the use of the in keyword.
This essentially limits the scope of the listener meaning that it will only
respond to events thrown from within the following block of code. Once
the thread of execution has left this block then the listener is discarded.
This means that a new listener is instantiated for each neighbourhood
constraint pair preventing any chance of an interaction being erroneously
attributed to a previous neighbourhood.



4

void detectConstraintInteractions(set{NeighbourhoodMove} nhoods){

forall(n in nhoods){

createInitialSolution();

var{bool} found(solver) := false;

forall(t in constraintType){

when constraintViolations[t]@changes(){

n.interactsWith(t);

found := true;

} in {

n.run();

if(!found){

n.exploreNeighbourhood();

while(n.hasMoves() && !found){

call(n.getMoveFromSelector());

}

}

}

}

}

}

Fig. 2: Comet implementation of detection method.

The major benefit of using events as the basis for our detection system is
the clean separation between the neighbourhoods and detector which we
can achieve. The detector simply iterates over a set of Neighbourhood
objects and checks each for interactions. The acceptance function for the
neighbourhood is set to accept any fitness. For purposes of detecting an
interaction it does not matter whether a move reduces or increases the
constraint violations; both indicate that a relationship exists.
The simulation is performed in two stages. Starting from a randomly
created initial solution a random move from the neighbourhood is chosen,
often this will lead to a constraint change and prevent the need for further
exploration. For some constraints the chance of randomly selecting a
move which would violate it is fairly low and so a more rigourous search
is required. If the initial move has not found any interaction then the
detector explores every neighbouring state from the current position. If
at any stage a change of the constraint violations is detected then the
exploration is stopped.

4 Results

The preliminary results presented in Table 1 show that simulation detec-
tion is correctly able to establish the relationships in all the cases where
a relationship does exist. In situations where no relationship exists there
are only two false positive detections, both on constraint c6. This high-
lights one of the main weakness of simulation; the inability to detect
cyclical dependencies.



5

Neighbourhood c1 c2 c3 c4 c5 c6 c7 c8
1 Move Event Timeslot 1 0 1 1 1 1 1 1
2 Move Event Room 0 1 1 0 0 0 0 0
3 Move Event Room & Timeslot 1 1 1 1 1 1 1 1
4 Swap Event Timeslots 1 0 1 1 1 1 1 1
5 Swap Event Room 0 1 0 0 0 0 0 0
6 Swap Event Room & Timeslot 1 1 0 1 1 1 1 1
7 Swap All Events Timeslots 0 0 0 1 1 1 1 1

Table 1: Results for ITC instance 2007-2-1.tim. The shaded cells indi-
cate where relationships exist. The underlined values highlight incorrect
detections.

Frequently a constraint will specify that a variable should never be as-
signed a particular value. In the ITC the final timeslot constraint, c6, is
an example. The penalty that violating this constraint accrues is depen-
dant upon the number of students within the incorrectly placed event. If
the search procedure exchanges the timeslots of two classes, one in the
invalid timeslot, then this will lead to a change in the penalty score. Al-
though the penalty score fluctuates the interchange neighbourhood will
never remove this violation and the best that could be achieved is a score
equal to the size of the smallest event. The problem can be removed by
monitoring the number of violations (rather than the violations weighted
by the class size) but at present we have not rectified this issue in our
implementation.

5 Conclusions

With this work we have indicated that the process of detecting a neigh-
bourhood’s constraint interactions can be performed automatically with
reasonable accuracy. We hope that this information will aid the creation
of more efficient algorithms which can exploit this hidden structure. A
benefit of our approach is that it is loosely coupled to the neighbour-
hoods and constraints which we feel is in keeping with Van Hentenryck
and Michel’s desire that “Local Search = Model + Search” [1, p. xiv].
Although the preliminary experiment has been conducted using the ITC
problems it contains no timetabling specific elements and should be ap-
plicable to any constrained problem. It should be noted that although we
have implemented this system in Comet there is no reason why the same
approach couldn’t be applied to other languages. We make extensive
use of Comet’s event system which allows us to create quite a succinct
method but the cycle of applying moves whilst monitoring the resultant
violation changes is not Comet specific.

6 Future Work

This work is still very much in its early stages and there are many is-
sues remaining to be explored. At present there is no caching of the



6

relationships identified by the simulation. Since all the instances of a
given problem will be subject to the same interactions then if the initial
detection results are cached future detection can be avoided. Currently
the simulation method takes several minutes to detect the interactions
between all constraint and neighbourhood pairs which is a considerable
overhead for each search run.
We are also exploring the possibility of using reflection to discover con-
straint neighbourhood relationships. By parsing the constraint model of
the problem it is possible to extract which variables the constraints are
defined across. If a neighbourhood alters a disjoint set of variables from
those involved in a constraint it can safely be assumed that no interaction
will take place.
Local Search’s effectiveness will always be tightly coupled to the selec-
tion of efficient neighbourhoods which allow the traversal between high
quality solutions. Guidelines for the design of efficient neighbourhoods
are hard to find with most neighbourhoods arising chiefly from human
intuition and prior experience. As noted earlier, work on the composi-
bility of neighbourhoods like that of Di Gaspero and Schaerf has sought
to automate or, at the very least, partially codify this process. Their de-
velopment of the EasySyn++ [4] section of the EasyLocal++ framework
illustrates further progress in this direction. Other avenues which could
be explored are the evolution of neighbourhood structures. Within the
Automated Planning community evolution has been successfully used to
create useful macro-actions [5] (which are analogous to search neighbour-
hoods).

References

1. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. 1st
edn. The MIT Press, Cambridge, Massachusetts (2005)

2. Kostuch, P.: The University Course Timetabling Problem with a
Three-Phase Approach. In Burke, E.K., Trick, M., eds.: Practice and
Theory of Automated Timetabling V. Volume 3616 of Lecture Notes
in Computer Science., Heidelberg, Spring Berlin (November 2005)
109–125

3. Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with
application to course timetabling. In Burke, E.K., De Causmaecker,
P., eds.: Practice and Theory of Automated Timetabling IV. Number
2740 in Lecture Notes in Computer Science. Springer-Verlag, Berlin-
Heidlberg, Germany (2003) 263–278

4. Di Gaspero, L., Schaerf, A.: EasySyn++: A Tool for Automatic Syn-
thesis of Stochastic Local Search Algorithms. In Stützle, T., Birat-
tari, M., Hoos, H.H., eds.: Engineering Stochastic Local Search Al-
gorithms. Designing, Implementing and Analyzing Effective Heuris-
tics. SLS 2007. Volume 4638 of Lecture Notes in Computer Science.,
Springer (2007) 177–181

5. Newton, M.A.H., Levine, J., Fox, M., Long, D.: Learning Macro-
Actions for Arbitrary Planners and Domains. In: Proceedings of the
17th International Conference on Automated Planning and Schedul-
ing ICAPS 07. (September 2007)


