
Fibrational Induction Meets Effects

Robert Atkey∗, Neil Ghani∗, Bart Jacobs†, and Patricia Johann∗

†Radboud University, The Netherlands, bart@cs.ru.nl
∗University of Strathclyde, Scotland

{Robert.Atkey, Neil.Ghani, Patricia.Johann}@cis.strath.ac.uk

Abstract. This paper provides several induction rules that can be used
to prove properties of effectful data types. Our results are semantic in
nature and build upon Hermida and Jacobs’ fibrational formulation of
induction for polynomial data types and its extension to all inductive
data types by Ghani, Johann, and Fumex. An effectful data type µ(TF) is
built from a functor F that describes data, and a monad T that computes
effects. Our main contribution is to derive induction rules that are generic
over all functors F and monads T such that µ(TF) exists. Along the way,
we also derive a principle of definition by structural recursion for effectful
data types that is similarly generic. Our induction rule is also generic
over the kinds of properties to be proved: like the work on which we
build, we work in a general fibrational setting and so can accommodate
very general notions of properties, rather than just those of particular
syntactic forms. We give examples exploiting the generality of our results,
and show how our results specialize to those in the literature, particularly
those of Filinski and Støvring.

1 Introduction

Induction is a powerful principle for proving properties of data types and the
programs that manipulate them. Probably the simplest induction rule is the
familiar one for the set of natural numbers: For any property P of natural num-
bers, if P0 holds, and if P (n+1) holds whenever Pn holds, then Pn holds for all
natural numbers n. As early as the 1960s, Burstall [2] observed that induction
rules are definable for various forms of tree-like data types as well. The data
types he considered can all be modelled by polynomial functors on Set, and even
today induction is most often used to prove properties of these types. But while
most treatments of induction for tree-like data types use a specific notion of
predicate, other reasonable notions are possible. For example, a predicate on a
set A is often taken by type theorists to be a function P : A→ Set, by category
theorists to be an object of the slice category Set/A, and by logicians to be a
subset of A. Thus, even just for tree-like data types, induction rules are typi-
cally derived on an ad hoc basis, with seemingly different results available for
the different kinds of properties of data types and their programs to be proved.

Until fairly recently a comprehensive and general treatment of induction re-
mained elusive. But in 1998 Hermida and Jacobs [9] showed how to replace ad
hoc treatments of induction by a unifying axiomatic approach based on fibra-
tions. The use of fibrations was motivated by the facts that i) the semantics of
data types in languages involving, say, non-termination usually involves cate-
gories other than Set; ii) in such circumstances, standard set-based notions of

predicates are no longer germane; iii) even when working in Set there are many
reasonable notions of predicate (e.g., the three mentioned above); and iv) when
deriving induction rules for more sophisticated classes of data types, we do not
want to have to develop a specialised theory of induction for each one; We hope
instead to appropriately instantiate a single, generic, axiomatic theory of induc-
tion that is widely applicable and abstracts over the specific choices of category,
functor, and predicate giving rise to different induction rules for specific classes
of data types. Fibrations support precisely such an axiomatic approach.

Although Hermida and Jacobs derive their induction rules only for data types
modelled by polynomial functors, this result was recently extended to all induc-
tive data types — i.e., all data types that are fixed points of functors — by
Ghani, Johann, and Fumex [7,8]. Examples of non-polynomial inductive data
types include rose trees, inductive families (e.g., perfect trees), quotient types
(e.g., finite power sets), and hyperfunctions. These data types are sophisticated,
but nevertheless are still pure, i.e., effect-free. This leads us to ask:

How can we reason inductively about data types in the presence of effects?

In this situation, we are interested in effectful data structures — i.e., data struc-
tures whose constructors can perform effectful computations — and the (possibly
effectful) programs that manipulate them. Such programs can fail to terminate,
raise exceptions, alter state, perform non-deterministic computations, and so on.

Moggi’s landmark paper [13] suggests that one way to handle effectful pro-
grams is to model effects via a monad T , where TX represents effectful compu-
tations that return values of type X with effects described by T . In Haskell, for
example, input/output effects are modelled by the monad IO, and we can define
the following effectful data type of IO-lists:

type IOList a = IO (IOList’ a)

data IOList’ a = IONil | IOCons a (IO (IOList’ a))

For any list of type IOList a, some IO action must be performed to discover
whether or not there is an element at the head of the list. Additional IO actions
must be performed to obtain any remaining elements. Such a data type could be
used to read list data “on demand” from some file or input device, for instance.
Recalling that the standard append function is associative on pure lists, and
observing that standard induction techniques for lists do not apply to functions
on effectful data types, we can ask whether or not it is possible to prove by
induction that the following effectful append function is associative on IO-lists:

appIO :: IOList a -> IOList a -> IOList a
appIO s t = do z <- s

case z of IONil -> t
IOCons w u -> return (IOCons w (appIO u t))

In fact, an even more fundamental question must first be addressed: How do
we know that appIO is well-defined? After all, it is not at all obvious that the
argument u to the recursive call of appIO is smaller than the original input s.

More generally, we can consider effectful data types given by the following
type definitions. These generalise IO-lists by abstracting, via f, over the data
structure involved and, via m, over the monad involved.

type D f m = m (Mu f m)

data Mu f m = In (f (m (Mu f m))

We can then ask whether structural recursion can be used to define functions on
data structures of type D f m and induction can be used to prove their properties.

Filinski and Støvring [5] provide partial answers to these questions. Taking
types to be interpreted in the category CPO of ω-complete partial orders and
total continuous functions, and taking a predicate to be an admissible subset of
a CPO, they give a mathematically principled induction rule for establishing the
truth of predicates for effectful strictly positive data types that can be modelled
in CPO. Their induction rule is modular, in that they separate the premises
for inductive reasoning about data structures from those for inductive reasoning
about effects, and a number of examples are given to illustrate its use. Filinski
and Støvring also give a principle of definition by structural recursion for effect-
ful data types. But because they restrict attention to CPO, to a syntactically
restricted class of functors, and to a particular notion of predicate, their results
are not as widely applicable as we might hope.

In this paper we show how the fibrational approach to induction can be
extended to the effectful setting. We obtain a generalisation of Filinski and
Støvring’s induction rule that is completely free of the above three restrictions.
We also derive a principle of definition by structural recursion for effectful data
types that is similarly restriction-free. Our principle of definition can be used to
show that appIO is well-defined, and our induction rule can be used to show that
it is associative on IO-lists (see Example 6). These results lie outside the scope of
Filinski and Støvring’s work. (Interestingly, while the standard reverse function
is an involution on lists, a similarly effectful reverse function is not an involu-
tion on IO-lists, so not all results transfer from the pure setting to the effectful
one.) When specialised to the fibration of subobjects of CPO implicitly used by
Filinski and Støvring, Theorem 2 and Corollary 1 give precisely their definition
principle and induction rule, respectively. But because we treat functors that
are not strictly positive, we are able to derive results for data types they cannot
handle. Moreover, even if we restrict to the same class of functors as Filinski
and Støvring, our fibrational approach allows us to derive, in addition to our
generalisation of their modular one, another more powerful effectful induction
rule (see Theorem 4). More specifically, our contributions are as follows:

• Given a functor F and a monad T , we first show in Theorem 2 that the carrier
µ(TF) of the initial TF -algebra deserves to be thought of as the effectful
data type built from data described by F and effects computed by T . In
fact, the effectful data types introduced by the Haskell code above are all of
the form µ(TF). Informally, the data type µ(TF) contains all interleavings
of F and T ; formally, it is the free structure which is the carrier of both

an F -algebra and Eilenberg-Moore algebra for T . Theorem 2 also gives a
principle of definition by structural recursion for effectful data types.

• We then turn to the question of proof by induction and show that there are
a number of useful induction rules for effectful data types. (See Corollary 1
and Theorems 4, 6, and 7.) We consider the relative merits of these rules,
and note that in the proof-irrelevant case, which includes that considered
by Filinski and Støvring, Theorems 4 and 6 coincide. We note that each
of our induction rules also gives us a definitional format for dependently
typed functions whose domains are effectful data types. This generalises the
elimination rules for (pure) inductive data types in Martin-Löf Type Theory.

• Finally, we consider effectful induction in fibrations having very strong sums.
Examples include the codomain and families fibrations, used heavily by cat-
egory theorists and type theorists, respectively. In such fibrations, we show
that the key operation of lifting is a strong monoidal functor from the cate-
gory of endofunctors on the base category to the category of endofunctors on
the total category of the fibration, and thus that liftings preserve monads.
This ensures that all of our inductive reasoning can be performed in the total
category of the fibration (see Section 6).

The rest of this paper is structured as follows. Section 2 introduces some
categorical preliminaries. Section 3 formalises the notion of an effectful data type.
It also shows how to construct algebras for the composition of two functors from
algebras for each of the component functors, gives a converse construction when
one of the functors is a monad, and uses these two constructions to generalise
Filinski and Støvring’s induction rule to arbitrary effectful data types. This is all
achieved without the use of fibrations, although, implicitly, Section 3 takes place
entirely within the subobject fibration over CPO. Section 4 reviews the fibrational
approach to induction. Section 5 relaxes the restriction to the subobject fibration
on CPOs and uses arbitrary fibrations explicitly to further abstract the notion
of predicate under consideration. We capitalise on this abstraction to give a
number of different induction rules derivable in the fibrational setting. Section 6
considers induction in the presence of very strong sums. Section 7 concludes and
discuss directions for further research.

2 Categorical Preliminaries

We assume familiarity with basic category theory, initial algebra semantics of
data types, and the representation of computational effects as monads.

Let B be a category and F : B → B be a functor. Recall that an F -algebra
is a morphism h : FX → X for some object X of B, called the carrier of h. For
any functor F , the collection of F -algebras itself forms the category AlgF . In
AlgF , an F -algebra morphism from the F -algebra h : FX → X to the F -algebra
g : FY → Y is a morphism f : X → Y such that f ◦ h = g ◦Ff . When it exists,
the initial F -algebra in : F (µF)→ µF is unique. We write UF for the forgetful
functor mapping each F -algebra to its carrier, and we suppress the subscript F
on U and on in when convenient.

Let B be a category and (T, η, µ) be a monad on B.1 We write T for the
monad (T, η, µ) when no confusion may result. An Eilenberg-Moore algebra for
T is a T -algebra h : TX → X such that h◦µX = h◦Th and h◦ηX = id; we can
think of such algebra as a T -algebra that respects the unit and multiplication of
T . The collection of Eilenberg-Moore algebras for a monad T forms the category
EMT . In EMT , an EMT -morphism from an Eilenberg-Moore algebra h : TX → X
to an Eilenberg-Moore algebra g : TY → Y is just a T -algebra morphism from
h to g. It is easy to check that EMT is a full subcategory of AlgT .

3 Effectful Data Types and an Effectful Induction Rule

The carrier µF of the initial F -algebra can thought of as the data type defined
by F . But if we are in an effectful setting, with effects modelled by a monad
(T, η, µ), then what type should we consider the effectful data type defined by F
and T together? Whatever it is, it should be the carrier of an F -algebra f that
describes the data. It should also be the carrier of a Eilenberg-Moore algebra g
for T so that it respects η and µ. Finally, it should be the carrier of an algebra
constructed from f and g that is initial in the same way that µF is the carrier
of the initial F -algebra. We therefore define the effectful data type generated by
F and T to be µ(TF). Moreover, in ◦ η is an F -algebra, and in ◦µT ◦T (in−1) is
an Eilenberg-Moore algebra for T , both with carrier µ(TF). It is easy to verify
that no T -algebra structure exists on the other obvious choice, namely µ(FT).

Unfortunately, however, carriers of initial TF -algebras can be hard to work
with. We therefore write µ(TF) for T (µ(FT)) when convenient. This is justified
by the “rolling lemma” [6], which entails that if F and G are functors such
that µ(GF) exists, then µ(FG) exists and µ(GF) = G(µ(FG)). The data types
D f m from the introduction all have the form T (µ(FT)). We establish that
T (µ(FT)) satisfies the above specification by first showing in Lemma 1 how to
construct FT -algebras from F -algebras and T -algebras, and then refining this
construction in Theorem 1 to take into account that T is a monad and we are
actually interested in its Eilenberg-Moore algebras. We begin with a definition.

Definition 1 Let F,G : B → B be functors, and let AlgF ×B AlgG be defined by
the pullback of UF : AlgF → B and UG : AlgG → B in Cat. An F -and-G-algebra
is an object of AlgF ×B AlgG, i.e., a triple comprising an object A of B, an F -
algebra f : FA→ A, and a G-algebra g : GA→ A. Morphisms of AlgF ×B AlgG
are morphisms of B that are simultaneously F -algebra and G-algebra morphisms.

Lemma 1. Let F,G : B → B be functors. There is a functor Φ : AlgF×BAlgG →
AlgFG that sends F -and-G-algebras to FG-algebras.

Proof. Define Φ(A, f, g) = f ◦ Fg. The action of Φ on morphisms is obvious. �

In the setting of effectful data types, where G is a monad in whose Eilenberg-
Moore algebras we are interested, Lemma 1 can be strengthened.
1 We use µ to denote both least fixed points of functors and multiplication operators

of monads as is traditional. Which is meant when will be made clear from context.

Definition 2 Let F : B → B be a functor, let (T, η, µ) be a monad on B, and
let AlgF ×B EMT be the category defined by the pullback of UF : AlgF → B
and UT : EMT → B in Cat. An F -and-T -Eilenberg-Moore algebra is an object
of AlgF ×B EMT , i.e., a triple comprising an object A of B, an F -algebra f :
FA → A, and an Eilenberg-Moore algebra g : TA → A for T . Morphisms of
AlgF ×B EMT are morphisms of B that are simultaneously F -algebra morphisms
and EMT -morphisms, i.e., F -algebra morphisms and T -algebra morphisms.

The key point about F -and-T -Eilenberg-Moore algebras is that the functor map-
ping them to FT -algebras has a left adjoint. Since every Eilenberg-Moore algebra
for T is a T -algebra, we abuse notation and also call this functor Φ.

Theorem 1. Let F : B → B be a functor and (T, η, µ) be a monad on B. The
functor Φ : AlgF ×B EMT → AlgFT has a left adjoint Ψ : AlgFT → AlgF ×B EMT .

Proof. Define Ψ by Ψ(k : FTA→ A) = (TA, η◦k : FTA→ TA, µ : T 2A→ TA)
on objects and by Ψf = Tf on morphisms. For any FT -algebra morphism
f : A→ B, naturality of η and µ ensure that Ψf is a morphism in AlgF ×B EMT .

To see that Φ and Ψ are adjoint let k : FTA→ A be an object of AlgFT and
(B, f : FB → B, g : TB → B) be an object of AlgF ×B EMT . We construct a
natural isomorphism between morphisms from Ψ k to (B, f, g) and morphisms
from k to Φ(B, f, g). Given h : Ψ k → (B, f, g), define φ(h) : k → Φ(B, f, g) by
φ(h) = h ◦ η. Then φ(h) is an FT -algebra morphism because f ◦Fg ◦FTφ(h) =
f◦Fg◦FTh◦FTη = f◦Fh◦Fµ◦FTη = f◦Fh = h◦η◦k = φ(h)◦k. Here, the first
equality holds because FT is a functor, the second holds because h is a T -algebra
morphism, the third by the monad laws, and the fourth because h is an F -algebra
morphism. Conversely, given h : k → Φ(B, f, g), define ψ(h) : Ψ k → (B, f, g) by
ψ(h) = g◦Th. Then ψ(h) is an F -algebra morphism because ψ(h)◦η◦k = g◦Th◦
η ◦k = g ◦η ◦h◦k = h◦k = f ◦Fg ◦FTh = f ◦Fψ(h). Here, the second equality
holds by naturality of η, the third because g is an Eilenberg-Moore algebra for T ,
and the fourth since h is an FT -algebra morphism. Moreover, ψ(h) is a T -algebra
morphism because g◦Tψ(h) = g◦Tg◦TTh = g◦µ◦TTh = g◦Th◦µ = ψ(h)◦µ.
Here, the second equality holds since g is an Eilenberg-Moore algebra for T and
the third holds by naturality of µ.

To see that φ and ψ constitute an isomorphism, first note that φ(ψ(h)) =
φ(g ◦ Th) = g ◦ Th ◦ η = g ◦ η ◦ h = h by naturality of η and the fact that g
is an Eilenberg-Moore algebra for T . We also have that ψ(φ(h)) = ψ(h ◦ η) =
g ◦Th ◦Tη = h ◦µ ◦Tη = h by the fact that h is a T -algebra morphism and the
monad laws. Naturality of φ and ψ is easily checked. �

A slightly slicker proof abstracts away from the category of Eilenberg-Moore
algebras for T to any adjunction L a R : B → D whose induced monad RL
is T . In this setting, we define AlgF ×B D to be the pullback of the forgetful
functor UF and R. The adjunction L a R : B → D then lifts to an adjunction
L† a R† : AlgFT → AlgF ×BD. Theorem 1 is the special case of this more general
construction for which D is EMT . Another special case takes D to be the Kleisli
category of T .

We can now give our principle of definition by effectful structural recursion.

Theorem 2. Let F be a functor and T be a monad. Then T (µ(FT)), if it exists,
is the carrier of the initial F -and-T -Eilenberg-Moore algebra.

Proof. Since inFT is the initial FT -algebra, and since left adjoints preserve initial
objects, we have that the initial F -and-T -Eilenberg-Moore algebra is Ψ inFT , i.e.,
the triple (T (µ(FT)), η ◦ in, µ). �

Given an F -and-T -Eilenberg-Moore algebra (A, f, g), Theorem 2 ensures the
existence of a unique F -and-T -Eilenberg-Moore algebra morphism from the ini-
tial such algebra to (A, f, g). This gives a morphism from T (µ(FT)) to A, and
hence a principle of definition by effectful structural recursion. Indeed, when T
is the identity monad, we recover precisely the standard principle of definition
by structural recursion for (pure) carriers of initial algebras.

Example 1. We can place the definition of appIO from the introduction on a for-
mal footing as follows. First note that IOList a is of the form T (µ(FT)), where
FX = 1 +a×X and T is the monad IO. The F -and-T -Eilenberg-Moore algebra
whose F -algebra sends inl ∗ to ys and inr(z, zs) to (η◦in)(inr(z, zs)), and whose
Eilenberg-Moore algebra for T is µ, defines appIO _ ys. It further ensures that
appIO _ ys is a T -algebra morphism between the T -algebra structure within
the initial F -and-T -Eilenberg-Moore algebra and the T -algebra structure within
the F -and-T -Eilenberg-Moore algebra just defined.

From Theorem 2 we also get the first of our effectful induction rules.

Corollary 1. Let P be a subobject of T (µ(FT)), as well as the carrier of an F -
and-T -Eilenberg-Moore algebra such that the inclusion map from P to T (µ(FT))
is an F -and-T -Eilenberg-Moore algebra morphism. Then P = T (µ(FT)).

Proof. There is an F -and-T -Eilenberg-Moore algebra morphism from the initial
such algebra to any with carrier P , and this induces a morphism from T (µ(FT))
to P . That this morphism is an inverse to the inclusion map from P to T (µ(FT))
follows from initiality and the fact that the inclusion map is monic. �

In Theorem 7 below we generalise Corollary 1 to handle more general notions
of predicate than that given by subobjects. But first we argue that Corollary 1
specialises to recover Filinski and Støvring’s induction rule. This rule assumes
a minimal T -invariant (TC, i) for F and a subset P of TC that is both T -
admissible and F -closed, and concludes that P = TC. But i) the minimal T -
invariant for F is precisely the initial F -and-T -algebra T (µ(FT)) in CPO, ii)
P ⊆ T (µ(FT)) is T -admissible iff there exists a T -algebra k : TP → P such
that the inclusion map ι from P to T (µ(FT)) is a T -algebra morphism from k to
µ : T 2(µ(FT)) → T (µ(FT)), and iii) P ⊆ T (µ(FT)) is F -closed iff there exists
an F -algebra h : FP → P such that ι is an F -algebra morphism from h to η◦ in.
Thus, P is the carrier of an F -and-T -Eilenberg-Moore algebra. Moreover, since
k coincides with µ and h coincides with η ◦ in on P , ι is an F -and-T -Eilenberg-
Moore algebra morphism. Thus, by Corollary 1, P = T (µ(FT)). Of course this
observation allows us to handle all of Filinski and Støvring’s examples.

4 Induction in a Fibrational Setting

Thus far we have characterised effectful data types and given our first induction
rule for them. This rule is generic over the category interpreting data types, as
well as over both the monad interpreting the effects in question and the functor
constructing the data type, and specialises to Filinski and Støvring’s rule. On the
other hand, it holds only for a specific notion of predicate, namely that given by
subobjects. Since we seek an induction rule that is also generic over predicates,
we turn to fibrations, which support an axiomatic approach to them. We begin
by recalling the basics of fibrations. More details can be found in, e.g., [10].

Let U : E → B be a functor. A morphism g : Q→ P in E is cartesian over a
morphism f : X → Y in B if Ug = f , and for every g′ : Q′ → P in E for which
Ug′ = f ◦ v for some v : UQ′ → X there exists a unique h : Q′ → Q in E such
that Uh = v and g ◦h = g′. The cartesian morphism f§P over a morphism f with
codomain UP is unique. We write f∗P for the domain of f§P .

Cartesian morphisms are the essence of fibrations. A functor U : E → B is a
fibration if for every object P of E and every morphism f : X → UP in B there
is a cartesian morphism f§P : f∗P → P in E such that U(f§P) = f . If U : E → B
is a fibration, we call B the base category of U and E the total category of U .
Objects of E can be thought of as predicates, objects of B can be thought of as
types, and U can be thought of as mapping each predicate P in E to the type
UP on which P is a predicate. We say that an object P in E is over its image
UP under U , and similarly for morphisms. For any object X of B, we write EX
for the fibre over X, i.e., for the subcategory of E consisting of objects over X
and vertical morphisms, i.e., morphisms over idX . If f : X → Y is a morphism
in B, then the function mapping each object P of E to f∗P extends to a functor
f∗ : EY → EX . We call the functor f∗ the reindexing functor induced by f .

Example 2. The category Fam(Set) has as objects pairs (X,P), where X is a
set and P : X → Set. We refer to (X,P) simply as P when convenient and
call X its domain. A morphism from P : X → Set to P ′ : X ′ → Set is a pair
(f, f∼) : P → P ′, where f : X → X ′ and f∼ : ∀x : X.P x → P ′(f x). The
functor U : Fam(Set)→ Set mapping (X,P) to X is called the families fibration.

Dependently typed programmers typically work in the families fibration, in which
induction amounts to defining dependently typed functions. It can be generalised
(in an equivalent form) to the following fibration.

Example 3. Let B be a category. The arrow category of B, denoted B→, has
the morphisms of B as its objects. A morphism in B→ from f : X → Y to
f ′ : X ′ → Y ′ is a pair (α1, α2) of morphisms in B such that f ′ ◦α1 = α2 ◦f . The
codomain functor cod : B→ → B maps an object f : X → Y of B→ to the object
Y of B. If B has pullbacks, then cod is a fibration, called the codomain fibration
over B: given an object f : X → Y in (B→)Y and a morphism f ′ : X ′ → Y in
B, the pullback of f and f ′ gives a cartesian morphism over f at f ′.

Example 4. If B is a category, then the category of subobjects of B, denoted
Sub(B), has (equivalence classes of) monomorphisms in B as its objects. A

monomorphism f : X ↪→ Y is called a subobject of Y . A morphism in Sub(B)
from f : X ↪→ Y to f ′ : X ′ ↪→ Y ′ is a map α2 : Y → Y ′ for which there exists a
unique map α1 : X → X ′ such that α2 ◦ f = f ′ ◦ α1. The map U : Sub(B)→ B
sending f : X ↪→ Y to Y extends to a functor. If B has pullbacks then U is
a fibration since the pullback of a monomorphism is a monomorphism. In this
case, U is called the subobject fibration over B.

We also need the notion of an opfibration. Abstractly, U : E → B is an
opfibration iff U : Eop → Bop is a fibration. More concretely, U is an opfibration
if for every object P of E and every morphism f : UP → Y in B there is an
opcartesian morphism fP§ : P → ΣfP in E over f . Moreover, if f : X → Y
is a morphism in B, then the function mapping each object P of EX to ΣfP
extends to a functor Σf : EX → EY which we call the opreindexing functor. A
functor is a bifibration if it is both a fibration and an opfibration. The families
and codomain fibrations are examples of bifibrations. More generally, a fibration
is a bifibration iff, for every morphism f : X → Y in B, f∗ is left adjoint to Σf .

We can now give the key definitions and results for our fibrational approach
to induction. If U : E → B is a fibration and F : B → B is a functor, then a
lifting of F with respect to U is a functor F̂ : E → E such that UF̂ = FU . We
say that U has fibred terminal objects if each fibre has a terminal object and
reindexing functors preserve them. In this case, the functor > : B → E mapping
each object to the terminal object of the fibre over it is called the truth functor
for U . A lifting F̂ of F is called truth-preserving if >F = F̂>.

Example 5. A truth-preserving lifting F→ of F with respect to the codomain
fibration cod is given by the action of F on morphisms.

A comprehension category with unit (or CCU, for short) is a fibration U : E → B
that has fibred terminal objects and is such that the terminal object functor >
has a right adjoint {−}. In this case, {−} is called the comprehension functor for
U . If ε is the counit of the adjunction > a {−}, then defining πP = UεP gives
a projection natural transformation from {P} to UP . Truth-preserving liftings
with respect to CCUs are used in [9] to give induction rules. The key result is:

Theorem 3. Let U : E → B be a CCU and F : B → B be a functor such that µF
exists, and let F̂ be a truth-preserving lifting of F . Then for every object P of E
and every algebra α : F̂P → P , there is a unique morphism indFα : µF → {P}
such that πP ◦ indF α = fold(Uα).

The proof consists of constructing a right adjoint 〈−〉 : AlgF̂ → AlgF mapping
F̂ -algebras with carrier P to F -algebras with carrier {P}. Given an F̂ -algebra
α : F̂P → P , we can define indF α to be fold 〈α〉 : µF → {P}. For second part of
the theorem, first note that πP is an F -algebra morphism from 〈α〉 to Uα. Then,
by the uniqueness of folds, we have that πP ◦ indF α = πP ◦ fold〈α〉 = fold(Uα).

Fibrations thus provide just the right structure for defining induction rules for
inductive data types. Although the truth-preserving liftings are given in [9] only
for polynomial functors, this restriction was removed in [7,8], which showed that
in a Lawvere fibration — i.e., a CCU that is also a bifibration — every functor

has a truth-preserving lifting. Indeed, observing that π extends to a functor
π : E → B→ with left adjoint I : B→ → E defined by I (f : X → Y) = Σf (>X),
we have that for any functor F , F̂ = IF→π : E → E is a truth-preserving
lifting with respect to U , where F→ is the lifting from Example 5. If µF exists,
then Theorem 3 guarantees that it has an induction rule.

5 Effectful Induction

In the remainder of the paper we assume a Lawvere fibration U : E → B, a
functor F : B → B, and a monad (T, η, µ) on B. We further assume that µ(FT)
exists. Our first effectful induction rule is obtained by recalling that T (µ(FT))
is the initial TF -algebra and instantiating Theorem 3 for TF .

Theorem 4. For every object P of E and algebra α : (T̂F)P → P there is a
unique morphism indTF α : T (µ(FT))→ {P} with πP ◦ indTF α = fold(Uα).

Unfortunately, the induction rule in Theorem 4 is more complicated than we
would like since the rule requires the user to supply a T̂F -algebra, and thus to
deal with F and T at the same time, rather than separately as in Corollary 1.
To produce a fibrational variant of Corollary 1, we therefore need to understand
the relationship between T̂F and T̂ F̂ . We turn to this now.

Lemma 2. If F and G are functors on B, and α : F → G is a natural trans-
formation, then there is a natural transformation α̂ : F̂ → Ĝ.

Proof. Since I and π are functors, we can define α̂ = Iα→π, where α→ : F→ →
G→ maps f : X → Y in B→ to the naturality square for α at f . �

Theorem 5. The lifting operation (̂−) defines a lax monoidal functor mapping
functors on B to functors on E.

Proof. That (̂−) preserves identity and composition of natural transformations
is verified by simple calculation, so it is indeed a functor. To see that this functor
is lax monoidal, we need natural transformations from Îd to Id and from F̂G
to F̂ Ĝ. We take the former to be the counit of the adjunction I a π. For the
latter, define σ : F̂G → F̂ Ĝ — i.e., σ : I(FG)→π → IF→πIG→π — by σ =
IF→ηG→π, where η is the unit of the adjunction I a π.

We will use the natural transformation σ : F̂G → F̂ Ĝ from the proof of Theo-
rem 5 in the proof of Theorem 6 below. Note that if σ were oplax rather than lax
— i.e., if we had σ : F̂ Ĝ→ F̂G — then T̂ would be a monad whenever T is. An
induction rule for effectful data types that assumes T̂ is a monad is discussed in
Section 6. For now, we derive induction rules for effectful data types that hold
even when T̂ is not a monad. The first is a fibrational variant of Corollary 1:

Theorem 6. Let P be an object of E, and let f : F̂P → P and g : T̂P → P be
morphisms of E. Then there is a unique morphism h : T (µ(FT)) → {P} in B
such that πP ◦ h = fold(Ug ◦ TUf). If P is over T (µ(FT)), g is over µ, and f
is over η ◦ in, then πP ◦ h = id.

Proof. From the algebra Φ(P, g, f) : T̂ F̂P → P , where Φ is as in Lemma 1,
we can construct the T̂F -algebra Φ(P, g, f) ◦ σP . By Theorem 4, there exists a
morphism h : T (µ(FT))→ {P} in B such that πP ◦h = fold(U(Φ(P, g, f)◦σP)).
If f : X → Y is an object of B→, then ηf is a pair whose second component
is id . The second component of F→ηf is thus also id , so by the definition of
I we have that IF→ηf is vertical. Since σP = IF→ηG→πP

, σP is also vertical.
Thus fold(U(Φ(P, g, f) ◦ σP)) = fold(U(Φ(P, g, f))), and by the definition of Φ
and the fact that T̂ is a lifting of T , we have that πP ◦ h = fold(Ug ◦ TUf) as
desired. If g is over µ and f is over η ◦ in, then πP ◦ h = fold(Ug ◦ TUf) =
fold(µ ◦ Tη ◦ T (in)) = fold (T (in)) = fold in = id . �

The condition πP ◦ h = id ensures that h maps every element t of T (µ(FT))
to a proof that Pt holds. We will make good use of the following generalisation
of Prop. 2.13 in [5], which shows how to build new T̂ -algebras from old.

Lemma 3. Let k : TA→ A be an Eilenberg-Moore algebra for T .

1. Let δ be the natural transformation defined by δA : A→ A×A and consider
the equality predicate EqA = Σδ>(A). Then U(EqA) = A × A and 〈k ◦
Tπ1, k ◦ Tπ2〉 : T (A × A) → A × A is an Eilenberg-Moore algebra for T . If
{EqA} = A for every A ∈ B, then there exists a morphism h : T̂ EqA → EqA
such that Uh = 〈k ◦ Tπ1, k ◦ Tπ2〉.

2. Let h : T̂P → P be a T̂ -algebra such that UP = A and Uh = k. Then for
every Eilenberg-Moore algebra k′ : TB → B for T and T -algebra morphism
f : B → A, there exists a morphism h′ : T̂ (f∗P)→ f∗P such that Uh′ = k′.

3. Let I be a set and suppose E has I-indexed products in its fibres. Then for
any I-indexed family (Pi, hi : T̂Pi → Pi) of T̂ -algebras with UPi = A and
Uhi = k for all i, there is a morphism h : T̂ (Πi∈IPi)→ Πi∈IPi with Uh = k.

Proof. The first part follows from a lemma in [10], and the third part follows
from the universal property of products. For the second part, note that because
h is over k, there is a vertical morphism v : T̂P → k∗P . We construct h′ :
T̂ (f∗P) → P by first noting that, since f is a T -Eilenberg-Moore algebra mor-
phism, we have (Tf)∗(k∗P) = k′∗(f∗P). We can then take h′ to be the compo-
sition of j : T̂ (f∗P)→ (Tf)∗(T̂P) and (Tf)∗v : (Tf)∗(T̂P)→ (Tf)∗(k∗P) and
k′§f∗P : k′∗(f∗P)→ f∗P . Here, j is constructed by first observing that T̂ (f∗P) =
ΣTπf∗P

>(T{f∗P}) by definition of T̂ , and that this is ΣTπf∗P
(T{f§P })∗>(T{P})

because reindexing preserves terminal objects. We then construct a morphism
from ΣTπf∗P

(T{f§P })∗>(T{P}) to (Tf)∗ΣTπP
>(T{P}) using a morphism in-

duced by a natural transformation from ΣTπf∗P
(T{f§P })∗ to (Tf)∗ΣTπP

that
is itself constructed using i) the fact that f is a T -algebra morphism, ii) the
unit of the adjunction ΣTπP

a (TπP)∗, and iii) the counit of the adjunction
ΣTπf∗P

a (Tπf∗P)∗. Noting that (Tf)∗ΣTπP
>(T{P}) = (Tf)∗(T̂P) by the

definition of T̂ completes the proof. �

Example 6. We can now prove that appIO is associative. We use the families fi-
bration, and so exploit the generality of our framework over that of [5] by working

with a base category other than CPO and a notion of predicate other than that
given by subobjects. The predicate P : IOList a → Set sends xs to 1 if, for
all ys zs: IOList a, appIO xs (appIO ys zs) = appIO (appIO xs ys) zs
holds and to ∅ otherwise. Recalling that IOList a is T (µ(FT)) for F and T
as in Example 1, we can show that P is the carrier of a T̂ -algebra by observ-
ing that i) the equality predicate on IOList a is the carrier of a T -algebra over
〈µ◦Tπ1, µ◦Tπ2〉 by the first part of Lemma 3; ii) for all ys zs : IOList a, the
predicate appIO xs (appIO ys zs) = appIO (appIO xs ys) zs on IOList a
× IOList a is the carrier of a T̂ -algebra over µ by the second part of Lemma 3;
and iii) P is thus the carrier of a T̂ -algebra over µ by the third part of Lemma 3.
In addition, P is the carrier of an F̂ -algebra: indeed by direct calculation we
have that the predicate F̂P : FX → Set sends inl ∗ to 1 and sends inr(x, xs)
to P xs. An F̂ -algebra with carrier P over η ◦ in is therefore given by an ele-
ment of P (return IONil) and, for every x:a and xs : IOList a, a function
P xs → P (return (IOCons x xs)). Both can be computed directly using the
definition of appIO. By Theorem 6, we thus have that P holds for all elements
of IOList a.

Example 7. We can exploit our ability to move beyond the effectful strictly posi-
tive data types treated by Filinski and Støvring to reason about indexed effectful
data types. We work in the subobject fibration over SetN (see Example 4). For
any set A and monad T on SetN, consider the N-indexed data type of effectful
perfect trees with data from A and effects from T given by T (µ(FAT)) : SetN,
where, FA(X : SetN) = λn.{∗ | n = 0} + {(a, x1, x2) | ∃n′. a ∈ A, x1 ∈
Xn′, x2 ∈ Xn′, n = n′ + 1}. By Theorem 2, if f : A → B then we can
define a morphism map(f,−) : T (µ(FAT)) → T (µ(FBT)) in SetN by giving
an FA-and-T -Eilenberg-Moore algebra with carrier T (µ(FBT)). The FA-algebra
sends, when n = 0, inl ∗ to η(in(inl ∗)), and, when n = n′ + 1, inr(a, x1, x2)
to η(in(inr(fa, x1, x2))). The Eilenberg-Moore algebra for T is just the multi-
plication µ of T . Now define the subobject i : P ↪→ T (µ(FAT)) in Sub(SetN)
by Pn = {t : T (µ(FAT))n | ∀f, g. map(f,map(g, t)) = map(f ◦ g, t)}. To show
that P = T (µ(FAT)), and hence that map preserves composition, we apply
Theorem 6. As in Example 6, we use Lemma 3 to give a T̂ -algebra on i over
µ; this uses the fact that map(f,−) is a T -Eilenberg-Moore algebra morphism
by construction. The existence of a F̂ -algebra on i over η ◦ in follows by direct
calculation. By Theorem 6 there is a morphism h : T (µ(FAT))→ {P} such that
πP ◦ h = id . But since {P} = P in Sub(SetN), we have that i and h together
give P = T (µ(FAT)).

Should we be satisfied with the effectful induction rule in Theorem 6? It is
not as expressive as that in Theorem 4 since not all T̂F -algebras arise from T̂ -
algebras and F̂ -algebras individually, but it is easier to use since we can check
whether or not predicates have T̂ -algebra structures without considering the
functor F̂ at all and vice-versa. However, neither rule ensures that h respects the
structure of the monad, i.e., is an F -and-T -Eilenberg-Moore algebra morphism.
As we now see, this is the case if 〈g〉 is an Eilenberg-Moore algebra for T .

Theorem 7. Let f : F̂P → P and g : T̂P → P be morphisms of E such that 〈g〉
is an Eilenberg-Moore algebra for T . Then there is a unique h : T (µ(FT))→ {P}
in B that is an F -and-T -Eilenberg-Moore algebra morphism. Further, πp ◦ h =
fold (Uf ◦ FUg). If g is over µ and f is over η ◦ in, then πp ◦ h = id.

Proof. Since ({P}, 〈f〉, 〈g〉) is an F -and-T -Eilenberg-Moore algebra there is a
unique F -and-T -Eilenberg-Moore algebra morphism from the initial such alge-
bra to it. Since T (µ(FT)) is the carrier of the initial F -and-T -Eilenberg-Moore
algebra, this gives the required morphism h : T (µ(FT))→ {P}. Indeed, h is the
morphism guaranteed by Theorem 6, and so πp ◦ h = id as desired. �

As expected, the effectful world contains the pure world. For example, if
(T, η, µ) is a monad, then we can think of η as a family of functions ηX : X → TX
mapping values of type X to the pure computations that just return those values.
Similarly, an effectful data structure T (µ(FT)) contains the pure data structure
µF : indeed, the natural transformation ηF : F → TF and the functoriality of
the fixed point operator µ together give the inclusion µ(ηF) : µF → T (µ(FT)).
Moreover, if P is a property over T (µ(FT)), then (µ(ηF))∗P is a property over
µF . Thus given f : F̂P → P and g : T̂P → P such that 〈g〉 is an Eilenberg-
Moore algebra for T , we may ask about the relationship between proofs of
(µ(ηF))∗P for µF obtained from f by Theorem 3 and proofs of P for T (µ(FT))
obtained from f and g by Theorem 7. It is not hard to see that induction for
T (µ(FT)) specialises to induction for µF when T (µ(FT)) is pure.

Finally, note that in a fibred preorder, for any T̂ -algebra g, 〈g〉 is always
an Eilenberg-Moore algebra for T . This is the case for the subobject fibration
implicitly used by Filinski and Støvring since, there, admissible predicates are
Eilenberg-Moore algebras over the multiplication µ of T . However, in the non-
fibred preorder case, there are a variety of different induction rules which are
possible. This reflects a trade-off: the more we assume, the better behaved our
induction proof is! Our default preference is for structure and we believe that
Theorem 7 provides the best rule. However, if we cannot establish the stronger
premises so as to obtain the better behaved induction rules, it is comforting to
know that the induction rules of Theorems 4 and 6 are still available.

6 A More Logical Treatment of Effectful Induction

The treatment we have given above of induction for effectful data types addresses
many of our practical concerns. It is derived from the general theory of fibra-
tional induction, it is axiomatic in terms of the functors, monads, and fibrations
involved, and Theorems 6 and 7 allow us to separate the proof obligations in an
induction proof into those pertaining only to the monad in question and those
pertaining only to the functor in question. There is, however, one feature of The-
orem 7 that is less than optimal. Underlying the fibrational methodology is the
separation between logical structure in the total category of the fibration and
type-theoretic structure in the base category of the fibration. Theorem 7 can thus
be seen as converting logical structure in the form of F̂ -algebras and T̂ -algebras

into type-theoretic structure in the form of F -and-T -Eilenberg-Moore algebras.
This is, of course, completely valid, especially in light of the propositions-as-
types interpretation, but this section shows there is a different approach which
reasons solely in the total category of the fibration and is thus purely logical.
The key idea is to deploy Theorem 2 in the total category of the fibration, and
work directly with F̂ and T̂ -algebras on P rather than converting them to F -
and-T -Eilenberg-Moore algebras on {P}. The major stumbling block to doing
this is that, in general, T̂ is not a monad. In this section we investigate effectful
induction in the case when T̂ is a monad. The condition we use to ensure this is
that the Lawvere fibration in which we work has very strong sums.

Definition 3 A Lawvere fibration U : E → B is said to have very strong sums if
for all f : X → Y in B and P ∈ EX , {f§P } : {P} → {ΣfP} is an isomorphism.

The following important property of very strong sums is from [1]: If U : E → B
is a Lawvere fibration with very strong sums, F : B → B is a functor, f : X → Y
is a morphism, and P ∈ EX , then F̂ (ΣfP) = ΣFf F̂P . Using this, we can prove
that in a Lawvere fibration with very strong sums lifting is actually a strong
monoidal functor, i.e., that lifting preserves functor composition.

Lemma 4. Let U : E → B be a Lawvere fibration with very strong sums. If
F,G : B → B are functors, then F̂G = F̂ Ĝ. If T is a monad, then so is T̂ .

Proof. For the first part of the lemma, note that (F̂G)P = ΣFGπP
K1FG{P} =

ΣFGπP
F̂K1G{P} = F̂ (ΣGπP

K1G{P}) = F̂ ĜP . Here, the first equality is by
the definition of F̂G, the second holds because F̂ is truth preserving, the third is
by the aforementioned property from [1], and the last is by definition of Ĝ. The
essence of the proof of the second part is the observations that monads are just
monoids in the monoidal category of endofunctors and strong monoidal functors
map monoids to monoids. �

Using Lemma 4 we can derive induction rules allowing us to work as much as
possible in the total category of a Lawvere fibration with very strong sums. To do
this, let (P, f, g) be an F̂ -and-T̂ -Eilenberg-Moore algebra. By Theorem 2, there is
a unique morphism from the initial T̂ F̂ -algebra to (P, f, g). But since T̂ F̂ = T̂F

and µ(T̂F) = >(µ(TF)) (see Corollary 4.10 of [8]), there is a morphism from
>(T (µ(FT))) to P , and thus one from T (µ(FT)) to {P} as desired.

The families and codomain fibrations both have very strong sums.

7 Conclusions, Related Work, and Future Work

We have investigated the interaction between induction and effects. We for-
malised the former using the recently developed fibrational interpretation of in-
duction because it is axiomatic in the category interpreting types and programs,
the functor representing the data type in question, and the category interpreting
predicates. We formalised effects using monads because they are both simple to
understand and widely used. We have shown, perhaps surprisingly, that several

induction rules can be derived for effectful data types. These rules assume pro-
gressively more structure in their hypotheses but deliver progressively stronger
inductive proofs. Ultimately, we hope this research will lay the foundation for a
reasoning module for effectful data types in a proof system such as Coq.

The combination of monadic effects and inductive data types has previously
been studied by Fokkinga [4] and Pardo [14]. They use distributive laws λ : FT →
TF relating functors describing data types to monads modelling effects. Given a
distributive law, it can be shown that µF is the carrier of an initial algebra in the
Kleisli category of T . From this, a theory of effectful structural recursion over
pure data is derived. By contrast, in this paper we have explored computation
and reasoning with effectful data, where data and effects are interleaved.

Lehman and Smyth [12] give a generic induction rule for (pure) inductive data
types in the case when predicates are taken to be subobjects in a category. Crole
and Pitts [3] use this rule to give a fixpoint induction rule for effectful compu-
tations, generalising the usual notion of Scott induction. Filinski and Støvring’s
induction principle, which we have generalised in this paper, extends these rules
to handle the interleaving of data and effects.

References
1. R. Atkey, N. Ghani, and P. Johann. When is a Type Refinement an Inductive

Type? Proc., Foundations of Software Science and Computation Structures, pp.
72–87, 2011.

2. R. Burstall. Proving Properties of Programs by Structural Induction. Computer
Journal 12(1), pp. 41–48, 1969.

3. R. Crole and A. Pitts. New Foundations for Fixpoint Computations: FIX-
Hyperdoctrines and the FIX-Logic. Information and Computation 98(2), pp. 171–
210, 1992.

4. M. Fokkinga. Monadic Maps and Folds for Arbitrary Datatypes. Technical Report,
University of Twente, 1994.

5. A. Filinski and K. Støvring. Inductive Reasoning About Effectful Data Types.
Proc., International Conference on Functional Programming, pp. 97–110, 2007.

6. A. Gill and G. Hutton. The worker/wrapper Transformation. Journal of Functional
Programming 19(2), pp. 227–251, 2009.

7. N. Ghani, P. Johann, and C. Fumex. Fibrational Induction Rules for Initial Alge-
bras. Proc., Computer Science Logic, pp. 336–350, 2010.

8. N. Ghani, P. Johann, and C. Fumex. Generic Fibrational Induction. Submitted,
2011.

9. C. Hermida and B. Jacobs. Structural Induction and Coinduction in a Fibrational
Setting. Information and Computation 145, pp. 107–152, 1998.

10. B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, Volume 141, Elsevier, 1999.

11. B. Jacobs. Comprehension Categories and the Semantics of Type Dependency.
Theoretical Computer Science 107, pp. 169–207, 1993.

12. D. Lehmann and M. Smyth. Algebraic Specification of Data Types: A Synthetic
Approach. Theory of Computing Systems 14(1), pp. 97–139, 1981.

13. E. Moggi. Computational Lambda-Calculus and Monads. Proc., Logic in Computer
Science, pp. 14–23, 1989.

14. A. Pardo. Combining Datatypes and Effects. Proc., Advanced Functional Program-
ming, LNCS 3622, pp.171–209, 2004.

	Fibrational Induction Meets Effects eserved @d = *@let@token -0.15in

