Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Total focussing method for volumetric imaging in immersion non destructive evaluation

O'Leary, R.L. and Tweedie, A. and Harvey, G. and Gachagan, A. and Holmes, C. and Wilcox, P. and Drinkwater, B. (2007) Total focussing method for volumetric imaging in immersion non destructive evaluation. In: 2007 IEEE International Ultrasonics Symposium, 2007-10-28 - 2007-10-31.

[img]
Preview
PDF
IEEE_symposium_2007_tweedie.pdf
Final Published Version

Download (281kB) | Preview

Abstract

This paper describes the use of a 550 (25x22) element 2MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1mm diameter side-drilled hole, a collection of 1mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45o of skew.