Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Total focussing method for volumetric imaging in immersion non destructive evaluation

O'Leary, R.L. and Tweedie, A. and Harvey, G. and Gachagan, A. and Holmes, C. and Wilcox, P. and Drinkwater, B. (2007) Total focussing method for volumetric imaging in immersion non destructive evaluation. In: 2007 IEEE International Ultrasonics Symposium, 2007-10-28 - 2007-10-31.

Final Published Version

Download (281kB) | Preview


This paper describes the use of a 550 (25x22) element 2MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1mm diameter side-drilled hole, a collection of 1mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45o of skew.