Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Design and demonstration of a novel incoherent optical CDMA system

Glesk, I. and Baby, V. and Brès, C. S. and Prucnal, P. R. and Kwong, W. C. (2005) Design and demonstration of a novel incoherent optical CDMA system. In: Proceedings - IEEE Military Communications Conference MILCOM. IEEE Military Communications Conference, 5 . IEEE, New York, pp. 3155-3161. ISBN 0780393937

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A detailed analysis of the scalability of two-dimensional optical codes is presented and two network deployment architectures for optical code division multiple access (OCDMA) are discussed. We present the architecture and or a highly scalable, 2.5 Gb/s per user code design for OCDMA system. The system is scalable to 100 potential and more than 10 simultaneous users, each with BER of less than 10(-9). The system architecture uses fast wavelength-hopping, time-spreading codes. Unlike phase sensitive coherent OCDAM systems, this architecture utilizes standard on-off-keyed optical pulses allocated in the time and wavelength domains. This incoherent OCDMA approach is compatible with existing WDM optical networks and utilizes off-the-shelf components. We discuss a novel optical subsystems design for encoders and decoders that enable the realization of a highly scalable incoherent OCDMA system with rapid reconfigurability. We demonstrate the operation of 4 simultaneous users operating at OC-48 (similar to 2.5 Gbit/s) with a power penalty of < 0.5dB and the reduction of mulliple-access interference using ultra-fast all-optical sampling with newly proposed TOAD-based OCDMA receiver.