Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Stationary distribution of stochastic population systems

Mao, Xuerong (2011) Stationary distribution of stochastic population systems. Systems and Control Letters, 60 (6). pp. 398-405. ISSN 0167-6911

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we consider the stochastic differential equation (SDE) population model dx(t) = diag(x1(t), . . . , xn(t))[(b + Ax(t))dt + σdB(t)] for n interacting species. The main aim is to study the stationary distribution of the solution. It is known (see e.g. Bahar and Mao (2004) [2] and Mao (2005) [6]) if the noise intensity is sufficiently large then the population may become extinct with probability one. Our main aim here is to find out what happens if the noise is relatively small. In this paper we will show the existence of a unique stationary distribution. We will then develop a useful method to compute the mean and variance of the stationary distribution. Computer simulations will be used to illustrate our theory.