Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

The influence of blinds on temperatures and air flows within ventilated double-skin facades

Infield, D.G. (2007) The influence of blinds on temperatures and air flows within ventilated double-skin facades. In: Proceedings of Clima 2007 WellBeing Indoors. UNSPECIFIED.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Ventilated façades have become an increasingly employed feature in the design of low energy buildings over recent years in that they offer the attractive features of a conventional glass façade but without the thermal disadvantages. These façades consist of a double skin surface, the outer layer of which is of toughened glass, and the inner layer of which usually comprises conventional double-glazing, behind which is the occupied space. The cavity formed by the outer and inner layers is ventilated, and frequently contains a blind. This blind, together with the cavity ventilation, provides a means to control the heat transfer across the façade, in terms of solar gain transmission and recovery of heat lost from the interior. A three-year project, funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC), has investigated the thermal and airflow performance of ventilated façades. A series of parametric experiments have been performed using the Large Scale Solar Simulator at Loughborough University. Results from these experiments have been used to validate models of airflow and thermal behaviour developed at De Montfort University. Advice on practical application and industrial practice has been provided by Arup Research and Development and IT Power. The result of the research is an improved understanding of the thermal and air flow behaviour of such ventilated double skin façades. The effects of external conditions, solar irradiation and exterior air temperature, on double skin façades with differing internal characteristics are presented and analysed in this paper. In particular, the effect of the blind blade angle on cavity temperatures and ventilation air flows will be reported, together with an outline of the guidance that is now emerging to assist designers of such façades.